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Abstract

This paper proposes a portfolio-independent method to estimate q-theory models

and examines whether an extensive set of stock market anomalies can be generated

by a two-capital q-model. Model parameters are obtained using Bayesian Markov

Chain Monte Carlo (MCMC) to match firm-level stock returns. Our methodology

addresses Campbell (2017)’s critique on prior studies that model parameters are

chosen to fit a specific set of anomalies and different values are needed to fit each

anomaly. The estimated two-capital model generates large and significant size,

momentum, profitability, investment, and intangibles premiums. However, it falls

short in explaining the value and accruals anomalies.

Keywords: q-theory, Bayesian MCMC estimation, Anomalies, Investment,

Profitability
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1 Introduction

The investment-based asset pricing literature studies returns from the supply side of the

economy and formulates returns based on firm fundamentals, under the assumption that

a firm operates to maximize its market equity.1 Liu, Whited and Zhang (2009) show that

such a simple q-model fits value, earnings surprises, and investment anomalies well, when

model parameters are chosen to match the average observed stock returns of decile portfolios

sorted by these anomaly variables. Additional asset pricing anomalies can be explained in

this framework as shown in subsequent studies, such as Liu and Zhang (2014) and Gonçalves,

Xue and Zhang (2020) among others.

In this line of research, model parameters are estimated via the Generalized Method of

Moments (GMM) with the average observed returns of testing portfolios as target moments.

This practice is likely to miss information orthogonal to the sorting variables underlying

these portfolios, and the resulting parameter estimates are generally portfolio-dependent.

More importantly, this approach can not give a fair evaluation of the model’s capability in

explaining target anomalies because the decile portfolios of these same anomalies are used

as the testing portfolios in parameter estimation. The set of parameters that are chosen to

explain their target anomalies often fail to explain other anomalies. As Campbell (2017)

(page 213) puts it:“This problem, that different parameters are needed to fit each anomaly,

is a pervasive one in the q-theoretic asset pricing literature”.

To address Campbell (2017)’s critique, we propose a portfolio-independent methodology

for estimating q-models, in which model parameters are chosen using the Bayesian Markov

1Examples include Cochrane (1991), Berk, Green and Naik (1999), Gomes, Kogan and Zhang (2003),
Carlson, Fisher and Giammarino (2004), Zhang (2005), Li, Livdan and Zhang (2009), Papanikolaou (2011),
Kogan and Papanikolaou (2014), and Bazdresch et al. (2014), among others.
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Chain Monte Carlo (MCMC) method to match the model-implied fundamental returns with

the observed stock returns at the firm level. Bayesian MCMC is widely used in the field

of macroeconomics (Smets and Wouters, 2007, among others) and has also been used to

study return dynamics (Li, Wells and Yu, 2008; Li et al., 2019, among others). Given its

portfolio-independence, this methodology can be used to evaluate the capability of any given

model in explaining stock market anomalies.

For comparison with prior literature, we estimate the same two-capital q-model as in

Gonçalves, Xue and Zhang (2020) and examine its performance in explaining anomalies

with portfolio-independent parameters. With the flexibility of Bayesian MCMC, we

estimate the model under four specifications, each with constant, industry-specific,

time-varying, or industry-specific and time-varying parameter values. Our simulation

studies show that Bayesian MCMC is able to discover the true parameter values under this

model framework. To examine the capability of the model in explaining stock market

anomalies, we consider 12 well-documented anomalies covering six major categories

classified by Hou, Xue and Zhang (2020):2 value anomaly sorted on book-to-market equity

ratio (BM); momentum anomaly sorted on the prior 11-month returns skipping the most

recent month (R11); four investment anomalies sorted on asset growth (I/A), net stock

issues (NSI), investment-to-assets ratio (∆PI/A), and accruals (Accruals); three

2We choose the 12 anomalies based on the following criteria: (1) in each of the six major categories, we
select the anomaly variables that have been extensively documented to predict future returns and generate
significant abnormal returns in our sample period (the only exception is size, which does not generate
significant abnormal returns in our sample period but is kept due to its importance in the literature); (2)
investment-based asset pricing models have been suggested by prior studies to explain these anomalies: value
and size (Gomes, Kogan and Zhang, 2003; Carlson, Fisher and Giammarino, 2004; Zhang, 2005), momentum
(Liu and Zhang, 2014), asset growth (Watanabe et al., 2013; Titman, Wei and Xie, 2013), investment-to-
assets ratio and new stock issues (Lyandres, Sun and Zhang, 2008; Li, Livdan and Zhang, 2009), accruals (Wu,
Zhang and Zhang, 2010), return-on-equity, return-on-assets, and gross profitability (Kogan, Li and Zhang,
2019; Ai, Li and Tong, 2021), research and development expenses (Li, 2011; Lin, 2012), and advertising
expenses (Belo, Lin and Vitorino, 2014).
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profitability anomalies sorted on return-on-equity (ROE), return-on-assets (ROA), and

gross profitability (GP/A); and two intangibles anomalies sorted on R&D

expenses-to-market ratio (RD/M) and advertising expenses-to-market ratio (Ad/M), and

one trading frictions anomaly sorted on market capitalization (Size).

Several findings emerge from our study. First, the estimated q-model matches the mean,

skewness, and kurtosis of firm-level returns well under all four specifications and is able

to capture 30% to 56% of the volatility depending on the specification. The specification

with industry-specific and time-varying parameter values leads to significantly lower mean

absolute error (m.a.e.) than the other three specifications and is used as the baseline to

examine fundamental return anomalies. We conduct an extensive set of tests to confirm that

the industry and time variations in our estimates of the two model parameters, the investment

adjustment cost parameter and production curvature parameter, are largely consistent with

their economic interpretations.

Second, the fundamental returns exhibit large and significant size, momentum,

investment (except the accruals), profitability, and intangibles premiums.3 The differences

between the realized and fundamental premiums, defined as alpha, are mostly insignificant

at the 5% level. More importantly, the fundamental returns of these anomaly deciles match

the dynamics of their counterparts in the data well. The fundamental and realized

portfolio returns are all highly correlated, with an average correlation coefficient of 0.69 for

decile portfolios and 0.43 for the high-minus-low deciles.

Third, comparative statics show that heterogeneity in firm characteristics contributes

3The posterior means for each premium and its t-statistic are as follows: the fundamental size premium
is −5.99% per annum (t=−5.63), the momentum premium is 11.82% (t=12.51), the I/A premium is −3.08%
(t=−2.25), the NSI premium is −3.05% (t=−3.36), the ∆PI/A premium is −5.79 (t=−4.81), the ROE
premium is 4.62% (t=5.72), the ROA premium is 3.80% (t=3.99), the GP/A premium is 7.26% (t=5.84),
the RD/M premium is 5.24% (t=2.12), and the Ad/M premium is 7.46% (t=2.82).
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more to anomaly premiums than the industry and time variations in parameter values.

Among firm characteristics, sales-to-capital ratio, as a measure for profitability, is more

important than lagged investment-to-capital ratio, which is opposite to what prior studies

(Liu, Whited and Zhang, 2009; Liu and Zhang, 2014; Gonçalves, Xue and Zhang, 2020)

find. The reason is that our estimates of the investment adjustment cost parameter are

much smaller than their estimates, while our estimates of the production curvature

parameters are in similar magnitude. For example, under the specification with constant

parameter values, our estimate of the adjustment cost parameter is 0.14, while in contrast,

the estimate is 2.84 in Gonçalves, Xue and Zhang (2020).4 In the presence of quadratic

investment adjustment costs, higher lagged investment rate means higher marginal costs of

investment, while higher profitability means higher marginal benefits of investment.

Therefore, fundamental stock return, which equals the levered investment return in the

model, increases with profitability but decreases with lagged investment rate. The

sensitivities of fundamental return to lagged investment rate and profitability increase with

the adjustment cost parameter and the production curvature parameter, respectively.

Smaller adjustment cost parameter thus largely decreases the importance of

investment-to-capital ratio in explaining the cross-sectional return anomalies.

Despite the aforementioned success, the model fails to generate the value and accruals

premiums. The fundamental value premium is 0.46% (t=0.26) per annum, compared to

the realized one of 6.74% (t=2.57). This result contrasts drastically with prior studies (Liu,

Whited and Zhang, 2009; Gonçalves, Xue and Zhang, 2020), in which estimated q-models can

generate sizable value premium. The key reason behind this difference is the aforementioned

4Depending on methods and datasets, estimates of the investment adjustment cost parameter in the
literature cover a wide range. Our estimates are in similar magnitude as those in Hall (2004) and Cooper
and Haltiwanger (2006), among others.
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small magnitude of our estimates of the adjustment costs parameter. Value firms have

lower investment-to-capital and sales-to-capital ratios. To generate the value premium, the

adjustment cost parameter has to be large enough so that the effect of investment dominates

the effect of profitability. This failure highlights the importance of portfolio-independent

parameter estimation in evaluating a model’s capability to generate anomalies. Since returns

on the value deciles are often among the target moments of the estimations in prior literature,

their estimates of investment adjustment costs parameter are naturally larger. We explore

two possible reasons why the model fails the value premium: the absence of asymmetric

investment adjustment costs and intangible capitals. However, neither of them seems to

explain the insignificant model-implied value premium.

The model also fails to generate the accruals anomaly. The fundamental accruals

premium is 4.74% (t =4.45), while the realized one is −5.58% (t=−3.14). High accruals

firms have higher profitability than low-accrual firms, resulting in higher fundamental

returns. However, the profitability of high-accruals firms is likely overstated because

numerous studies (Dechow and Dichev, 2002, among others) show that high-accruals firms

are more likely to engage in earnings management activities and have more subsequent

write-offs of account receivables than low-accruals firms do. Prior literature, such as Zhang

(2007) and Wu, Zhang and Zhang (2010), argues that the accruals premium is driven by

the cross-sectional spread in working capital investment. However, we show that adding

adjustment costs in working capital investment leads to qualitatively similar results.

Furthermore, we compare the dynamics of the fundamental and realized factor premiums.

We show that the model captures the short-lived dynamics of the momentum, ROE, and

ROA premiums and the long-lived dynamics of the other anomalies. Fundamental factor

premiums also exhibit largely consistent cyclicality as those of the realized ones, albeit with
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less cyclical variations. Overall, the model successfully captures the dynamics of these factor

premiums.

At last, we explore the out-of-sample predictive power of the estimated model. We show

that the simple q-model combined with the Bayesian MCMC has reliable out-of-sample

predictive power. The average realized return spread between firms with high and low

predicted returns is large and significant (0.45% per month with t=2.45). Moreover, this

return spread cannot be explained by the Capital Asset Pricing Model (CAPM), Fama-

French factor models, nor by the Hou-Xue-Zhang q-factor model. Given that these linear

risk-factor models have poor out-of-sample performance (Fama and French, 1997; Gonçalves,

Xue and Zhang, 2020), our results highlight the importance of the model’s simple yet powerful

economic structure to its out-of-sample performance.

Our work is built directly on Liu, Whited and Zhang (2009), Liu and Zhang (2014), and

Gonçalves, Xue and Zhang (2020). These papers conduct GMM estimations of various q-

models using average anomaly portfolio returns as target moments. Liu, Whited and Zhang

(2009) show that a one-capital q-model can match the average returns of portfolios sorted

on earnings surprises, book-to-market equity, and capital investment. Liu and Zhang (2014)

use the same model and estimation procedure to explain the momentum premium. However,

the parameter values vary with testing portfolios substantially. Gonçalves, Xue and Zhang

(2020) estimate a two-capital q-model to match the average returns of 40 decile portfolios

sorted on book-to-market equity, asset growth, return-on-equity, and momentum. They

show that when fundamental returns are computed at firm level rather than at portfolio

level, parameter estimates are more stable due to better aggregation. Different from these

previous studies, our estimation method does not involve aggregation and portfolios and

portfolio-independent estimation is crucial for a fair evaluation of model performance.
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In a similar vein, Belo, Xue and Zhang (2013) estimate a q-model by matching average q

at the portfolio level, in addition to matching return moments. Belo et al. (2022) estimate a

q-model with both tangible and intangible capitals by matching the time series of portfolio-

level cross-sectional mean valuation ratios for a given set of testing portfolios. The estimation

method in Belo et al. (2022) allows the dynamics of valuation ratios to be better captured.

Our method can be easily applied to explain firm-level valuation ratios, which is a promising

future direction.

Finally, our paper contributes to the literature on cross sectional stock return prediction.

Prior studies either run cross-sectional regressions of future stock returns on a few lagged

stock characteristics (e.g., Fama and French, 2008b; Lewellen, 2015), or most recently use

machine learning methods to harness a large collection of predictor variables, (e.g., Gu,

Kelly and Xiu, 2020; Kozak, Nagel and Santosh, 2020). However, previous approaches do

not impose economic structure on the data.5 Our method is complementary to the existing

literature by combining the Bayesian MCMC with a simple yet powerful q-theoretical model.

The rest of the paper is organized as follows. Section 2 outlines the model. Section 3

explains the data used in the estimation, describes the estimation procedure, and verifies the

accuracy of Bayesian MCMC estimates under our model framework using simulation studies.

Section 4 presents the estimation results and compares the performance of the four estimation

specifications. Section 5 examines the 12 model-implied fundamental anomaly premiums and

explores the economic mechanisms behind the capability of the estimated model in explaining

anomalies and the limitations of the model. Section 6 discusses the recursive estimation with

expanding window and out-of-sample forecasts. Section 7 concludes.

5Gu, Kelly and Xiu (2020) state that “Machine learning methods on their own do not identify deep
fundamental associations among asset prices and conditioning variables” and call for future research in the
direction that combines statistical methods with economic structures (e.g., Feng, Giglio and Xiu, 2020).
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2 The model

We adopt the two-capital model in Gonçalves, Xue and Zhang (2020), in which firms use

three inputs in production: long-term physical capital (K), short-term working capital (W ),

and costlessly adjustable input (S) such as energy and purchased service, the prices of

which are taken as given by firms. Operating profit of firm i in industry j at time t is Πit =

Π(Kit,Wit, Sit), which exhibits constant-return-to-scale. Under the assumption of a perfectly

competitive and frictionless market for input S, Sit is chosen to maximize contemporaneous

operating profits. With Cobb-Douglas production technology, marginal products of physical

and working capital are given by ∂Πit/∂Kit = γKjtYit/Kit and ∂Πit/∂Wit = γWjt Yit/Wit,

respectively, in which γKjt , γ
W
jt > 0 are the corresponding shares of capital in sales Yit with

γjt ≡ γKjt + γWjt < 1.6 The model is estimated under four specifications, each with constant,

industry-specific, time-varying, or industry-specific and time-varying parameter values. For

generality, we formulate the model with industry-specific and time-varying parameter values

in this section.

Note that the implications of the model hold regardless of whether model parameters

are constant, industry-specific, or time-varying, as long as they are exogenous. We follow

the convention in this line of research and assume rational expectation in the model, in

which individuals know the true economic model, its parameters and shocks, and the nature

of the stochastic processes that govern their evolution. The proofs and derivations in the

Appendix do not rely on constant model parameters. The role of exogeneous and time varying

parameters in the model is analogous to that of productivity shocks. The assumptions crucial

to the model predictions are (1) profit function Π(Kit,Wit, Sit) is constant-return-to-scale;

6Section A in the Internet Appendix provides the proof.
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(2) investment adjustment cost function is linearly homogeneous in investment and capital.

In the estimations with time-varying parameters, we assume that these parameters follow

random walks.7

Firms choose investments in physical and working capital to maximize the market equity.

Physical capital evolves as Kit+1 = (1− δit)Kit+ Iit in which Iit is the investment in physical

capital, and δit is the depreciation rate. Investment in physical capital incurs quadratic

adjustment costs:

Φit ≡ Φ(Iit, Kit) =
ajt
2

(
Iit
Kit

)2

Kit , (1)

where ajt is the physical adjustment costs parameter. Working capital evolves as Wit+1 =

Wit+∆Wit, in which ∆Wit is the investment in working capital. In addition, working capital

does not depreciate and is not accompanied with adjustment costs.

In addition to equity financing, firm i in industry j issues debt Bit+1 with interest rate

rBit+1 at the beginning of time t, which is repaid at the beginning of t+1. At tax rate τt, firm

i’s net payout is given by Dit ≡ (1− τt) (Πit − Φit)− Iit −∆Wit +Bit+1 − rBait Bit + τtδitKit,

in which rBait ≡ rBit − τt(rBit − 1) is the after-tax interest rate. Taking the stochastic pricing

kernel, Mt+1, as given, firm i chooses Iit, Kit+1, ∆Wit, Wit+1, and Bit+1 to maximize its cum-

dividend market equity, Vit ≡ Et[
∑∞

s=0Mt+sDt+s]. The first-order condition for physical

investment implies that Et[Mt+1r
K
it+1] = 1, in which rKit+1 is the return on physical capital

investment:

rKit+1 =

(1− τt+1)

[
γKjt+1

(
Yit+1

Kit+1

)
+

ajt+1

2

(
Iit+1

Kit+1

)2
]

+ τt+1δit+1 + (1− δit+1)
[
1 + (1− τt+1)ajt+1

(
Iit+1

Kit+1

)]
1 + (1− τt)ajt

(
Iit
Kit

) .

(2)

7We also try a specification that parameters evolve AR(1) process. The estimation yields close to one
persistences and for simplicity, we assume random walk for our baseline estimation.
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Similarly, the first-order condition for working capital investment implies that

Et[Mt+1r
W
it+1] = 1, in which rWit+1 is the return on working capital investment:

rWit+1 = 1 + (1− τt+1)γWjt+1

Yit+1

Wit+1

. (3)

Section A in the Internet Appendix shows that the weighted average of the two investment

returns equals the weighted average cost of equity and the after-tax cost of debt:

wKit r
K
it+1 + (1− wKit )rWit+1 = wBit r

Ba
it+1 + (1− wBit )rSit+1 , (4)

in which wBit ≡ Bit+1/(Vit−Dit+Bit+1) is the firm’s market leverage, rSit+1 ≡ Vit+1/(Vit−Dit)

is the stock return, wKit ≡ qKitKit+1/(q
K
itKit+1 + Wit+1) is the weight of firm’s market value

attributed to physical capital and qKit ≡ 1 + ajt(1 − τt)Iit/Kit is the marginal q of physical

capital. The marginal q of working capital is one in the absence of adjustment costs in

working capital investment. The Tobin’s q of firm i at time t is the weighted average of

marginal q’s of physical and working capitals, given by

qit =
Pit +Bit+1

Kt+1 +Wit+1

=

[
1 + ajt(1− τt)

Iit
Kit

]
Kit+1

Kit+1 +Wit+1

+
Wit+1

Kit+1 +Wit+1

. (5)

Solving for the stock return from equation (4) leads to the model-implied fundamental stock
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return of firm i from t to t+ 1:

rFit+1 ≡ f (Xit, Xit+1|θt, θt+1)

=

{
(1− τt+1)

[
γjt+1

(
Yit+1

Kit+1

)
+
ajt+1

2

(
Iit+1

Kit+1

)2
]

+ τt+1δit+1

+(1− δit+1)

[
1 + (1− τt+1)ajt+1

(
Iit+1

Kit+1

)]
+
Wit+1

Kit+1

}/{(
1− wBit

) [
1 + (1− τt)ajt

(
Iit
Kit

)
+
Wit+1

Kit+1

]}
−
wBit r

Ba
it+1

1− wBit
, (6)

where Xit is the set of accounting variables used in equation (6) that represent firm i’s

fundamentals, and θt ≡ {(γjt, ajt); j = 1, . . . , 10} is the set of model parameters at time t for

Fama-French 10 industries. The equality between the realized stock return and the model-

implied fundamental return, rSit+1 = rFit+1, holds for any firm i and for any period from t to

t+1 under this framework. Next, we estimate the two structural parameters, γ and a, based

on this equality. Notice that γK and γW cannot be separately identified because rF depends

on their summation only.

3 Data and estimation methodology

3.1 Data

Our sample includes all common stocks traded on NYSE, Amex, and NASDAQ with

available accounting and return data. We exclude firms with primary standard industrial

classifications between 6000 and 6999 (financial firms), firms with negative book equity,

and firms with nonpositive total assets, net property, plant, and equipment, or sales at the

portfolio formation. These data items are needed to calculate firm-level fundamental
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returns. We obtain monthly stock return data from the Center for Research in Security

Prices (CRSP). Firm-level accounting data are obtained from the annual and quarterly

Standard and Poor’s Compustat industrial files. Our data sample covers the period from

January 1967 to June 2017.

3.1.1 Anomalies We explore 12 anomalies covering all six categories defined in Hou,

Xue and Zhang (2020): value anomaly sorted on book-to-market equity ratio (BM);

momentum anomaly sorted on the prior 11-month returns skipping the most recent month

(R11); four investment anomalies sorted on asset growth (I/A), net stock issues (NSI),

investment-to-assets ratio (∆PI/A), and accruals (Accruals); three profitability anomalies

sorted on return-on-equity (ROE), return-on-assets (ROA), and gross profitability (GP/A);

and two intangibles anomalies sorted on R&D expense-to-market ratio (RD/M) and

advertising expense-to-market ratio (Ad/M), and one trading frictions anomaly sorted on

market capitalization (Size).8 We choose these 12 anomalies based on the following criteria:

(1) The average value-weighted returns of their high-minus-low deciles with NYSE

breakpoints are significant at the 5% level, with the exception of the size anomaly. Size

anomaly is included since it is one of the most studied anomalies in the literature. (2)

Investment-based asset pricing models have been suggested by prior studies to explain

these anomalies, for example, value and size (Gomes, Kogan and Zhang, 2003; Carlson,

Fisher and Giammarino, 2004; Zhang, 2005), momentum (Liu and Zhang, 2014), asset

growth (Watanabe et al., 2013; Titman, Wei and Xie, 2013), investment-to-assets ratio and

new stock issues (Lyandres, Sun and Zhang, 2008; Li, Livdan and Zhang, 2009), accruals

(Wu, Zhang and Zhang, 2010), return-on-equity, return-on-assets, and gross profitability

8Hou, Xue and Zhang (2020) show that almost all well-known anomalies in the trading frictions category
cannot be successfully replicated. For completeness, we include the Size anomaly from this category since it
is one of the most widely studied anomalies in the literature.
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(Kogan, Li and Zhang, 2019; Ai, Li and Tong, 2021), research and development expenses

(Li, 2011; Lin, 2012), and advertising expenses (Belo, Lin and Vitorino, 2014). Section A in

the Internet Appendix provides the definitions of these variables and the construction of

the corresponding decile portfolios.

Table 1 presents the monthly average excess returns of the 10 decile portfolios sorted

on each of the 12 anomaly variables. The t-statistics adjusted for heteroscedasticity and

autocorrelations are reported in parentheses. “L” denotes the lowest decile, “H” the highest

decile, and “H-L” the high-minus-low decile. As in Hou, Xue and Zhang (2020), decile

portfolios are formed with NYSE breakpoints and value-weighted returns to control for

microcaps. The sample period is from January 1967 to June 2017 for all anomaly variables

except ROA, RD/M, and Ad/M, the samples for which start from July 1972, July 1976,

and July 1973, respectively, due to data availability. All 12 anomalies except size have

statistically and economically significant premiums in our sample period.

3.1.2 Measures and timing alignment Model-implied fundamental returns are

constructed in annual frequency because the needed fundamental variables such as

investments are only available at annual frequency for the long sample starting from 1967.

In the model, time-t stock variables are at the beginning of year t, and time-t flow variables

are over the course of year t. Thus, time-t stock variables are obtained from the balance

sheet of fiscal year t− 1 and flow variables from the balance sheet of fiscal year t.

We adopt the same measures used by Gonçalves, Xue and Zhang (2020) for the variables

needed to construct the fundamental returns. Specifically, output, Yit, is measured as sales

(Compustat annual item SALE). Physical capital, Kit, is net property, plant, and equipment

(item PPENT). Short-term working capital, Wit, is current assets (item ACT). Total debt,
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Bit+1, is long-term debt (item DLTT, zero if missing) plus short-term debt (item DLC, zero if

missing) from fiscal year t balance sheet. Tax rate τ is the statutory corporate income tax rate

from the commerce clearing house’s annual publications. The depreciation rate of physical

capital, δit, is the amount of depreciation and amortization (item DP) minus the amortization

of intangibles (item AM, zero if missing) divided by physical capital (item PPENT). Physical

investment, Iit, is measured as Kit+1− (1− δit)Kit. The market leverage, wBit , is the ratio of

total debt to the sum of total debt and market equity. The pre-tax cost of debt, rBit , is the

ratio of total interest and related expenses (item XINT) scaled by total debt, Bit. Following

Gonçalves, Xue and Zhang (2020), we winsorize unbounded variables, including Iit/Kit,

Iit+1/Kit+1, ∆Wit/Wit, ∆Wit+1/Wit+1, at the 2.5% - 97.5% level. For variables bounded

below by zero, including Yit+1/Kit+1, Yit+1/Wit+1, Yit+1/(Kit+1 +Wit+1), Wit+1/Kit+1, δit+1,

and rBit+1, we winsorize them at the 0% - 95% level. We do not winsorize variables bounded

between zero and one, such as Kit+1/(Kit+1 +Wit+1) or the market leverage, wBit . Summary

statistics and correlation matrix of the aforementioned variables are reported in Table 2 and

closely match those in Gonçalves, Xue and Zhang (2020).

In the model, the fundamental stock return of firm i from year t to t + 1, rFit+1, is

constructed with both stock and flow variables at annual frequency. In the estimation, we

match rFit+1 with the observed annual return of firm i from the middle of fiscal year t to the

middle of fiscal year t + 1, following Gonçalves, Xue and Zhang (2020). Specifically, if firm

i’s fiscal end of year t is month l, rSit+1, the counterpart of rFit+1, is the realized 12-month

return between month l− 5 and l+ 6. The detailed description about the timing alignment

is provided in Appendix C.

To study anomalies, we construct fundamental portfolio returns based on fundamental

firm-level returns. Even though firm-level fundamental returns change annually (in fiscal
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year), fundamental portfolio returns change monthly because fiscal year-endings vary

across firms and portfolio compositions can also change monthly. However, the

fundamental portfolio returns of a given month are based on annual accounting variables

both prior to and after the month. To better align the timing and make a fair comparison,

we follow Gonçalves, Xue and Zhang (2020) and compound the realized portfolio stock

returns within a 12-month rolling window with the month in question in the middle of the

window. Specifically, we multiply gross returns from month l − 5 to month l + 6 to match

the fundamental returns constructed in month l. Applying this rolling procedure to the

realized monthly portfolio returns (January 1967 to June 2017) yields the monthly

observations of annualized portfolio returns from June 1967 to December 2016.

We validate our data construction and portfolio formation by successfully reproducing

the realized and predicted returns (by the baseline model) of the book-to-market (BM),

momentum (R11), asset growth (I/A), and return-on-equity (ROE) deciles in Gonçalves,

Xue and Zhang (2020) using their estimated model parameters. The results are plotted in

Figure A.1, which replicates Panel B of Figure 3 in Gonçalves, Xue and Zhang (2020).

3.2 Estimation methodology

Prior studies (Liu, Whited and Zhang, 2009; Gonçalves, Xue and Zhang, 2020, among

others) use the General Method of Moments (GMM) to match the unconditional moments

derived from equation (6): ET [rSpt+1− rFpt+1] = 0 for testing portfolio p, where ET [·] refers to

the operation of taking time series average. To completely avoid portfolio dependence in

parameter estimates, we instead target the entire panel of firm-level stock returns using the

Bayesian Markov Chain Monte Carlo (MCMC) method. The Bayesian MCMC method can

efficiently extract large amount of information from firm-level stock returns and enable us
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to allow the parameters to vary across industries and over time. We consider four

specifications in the estimation: constant parameters, industry variations only, parameters

with time variations only, and parameters with industry and time variations. Next, we

explain our methodology in details in terms of the specification that allows both industry

and time variations in parameter values.

3.2.1 Bayesian MCMC Denote the technology parameter in the production function

for industry j at time t as γjt and the physical adjustment costs parameter as ajt. The time

series of parameter values are referred to as “latent variables” in Bayesian MCMC estimation

and are assumed to evolve as random walk processes:

γjt+1

ajt+1

 =

γjt
ajt

+

σγ
σa


eγjt+1

eajt+1

 , (7)

where eγjt+1 and eajt+1 follow standard normal distributions independently, and σγ and σa

are the conditional standard deviations of latent variables γjt+1 and ajt+1 conditioning on

previous time t. Imposing a random walk process on the deep parameters not only encourages

persistence, but also enables us to borrow information across time in estimation, leading to

more efficient estimates.9 For the specification with time variations only, the same random

walk process is assumed for all industries, and for the specifications with no time variations,

eγjt+1 and eajt+1 are set to zero.

Realized stock return of firm i (in industry j) at time t+1 is modeled as the corresponding

9We also estimate an autoregressive process with order one. The estimated persistence parameters are
very close to one for both processes of γjt and ajt. Thus, we use random walk processes in our baseline
model for simplicity.
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fundamental return plus an estimation error:

rSit+1 = rFit+1 +$
−1/2
it σre

r
it+1, (8)

where erit+1 follows the standard normal distribution, σr is a parameter to be estimated, and

the weight $
−1/2
it in the estimation error is specified as:

$it ≡
Vit∑Njt

i=1 Vit
, (9)

in which Njt is the number of firms at time t in industry j to which firm i belongs. By

this specification, we introduce heteroskedasticity into the estimation errors of realized stock

returns. The variance of a firm’s estimation errors decreases with its market equity Vit in

order to accommodate the fact that stock returns of large firms are less noisy and more

reflective of their fundamentals than the returns of small firms.10 More importantly, such

specification makes the estimated model economically relevant in the sense that it captures

the regularity of the majority of the economy. The same rationale motivates the use of NYSE

breakpoints in constructing portfolios and regressions with weighted least squares in asset

pricing studies (e.g., Hou, Xue and Zhang, 2015).11

For the MCMC method, prior distributions of the model parameters need to be specified.

We use inverse gamma distributions for the priors of variances: σ2
γ ∼ IG(κγ1 , κ

γ
2), σ2

a ∼

IG(κa1, κ
a
2), and σ2

r ∼ IG(κr1, κ
r
2), where κ1 and κ2 are hyper-parameters of the inverse gamma

10Large firms have more analysts following than small firms, thus their value is under much closer scrutiny
(Bhushan, 1989). Moreover, stocks of large firms are generally more liquid and their market values are less
likely to be manipulated or affected by a small group of investors (Amihud, 2002).

11Effort (not reported here) has been made to investigate other kinds of functional forms relating the
variability in estimation errors of a firm’s stock returns to its market equity. The relationship specified in
equation (9) best fits the data in terms of mean absolute error (m.a.e.) of firm-level stock returns.
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distribution (shape-scale parameterizations). The values of κr1, κγ1 , and κa1 are specified to

be 0.01, 1, and 1, respectively; the values of κr2, κγ2 , and κa2 are chosen to be 0.02, 5, and

5, respectively. The values of κ1’s are chosen relatively small so that the information from

data is more likely to dominate (see Section B in the Internet Appendix). The values of κ2’s

are set relatively large so that the variances of the priors are large and thus less informative.

Although the choices of these values are seemingly arbitrary, as MCMC runs and information

from the data gets entered into the posterior draws, these hyper-parameters weigh less and

less. The information from data dominates the posterior draws when MCMC converges.

Finally, the time series of latent variables θ ≡ {θt; t = 1, · · · , T}, where

θt = {(γjt, ajt); j = 1, . . . , 10} and variance parameters σ ≡ {σ2
γ, σ

2
a, σ

2
r} are drawn in an

iterative manner from each complete conditional posterior distribution, resulting in

posterior samples from the joint posterior distribution. Based on the model specifications

in equations (7) and (8), the joint posterior distribution of θ and σ can be written (in a

proportional form) as:

P(θ,σ|X, rS, rBa) ∝
T−1∏
t=0

Nt+1∏
i=1

N
(
rSit+1; rFit+1, σ

2
r

)
×

T−1∏
t=0

Nd∏
j=1

N
(
γjt+1; γjt, σ

2
γ

)
×

T−1∏
t=0

Nd∏
j=1

N
(
ajt+1; ajt, σ

2
a

)
×IG

(
σ2
r ;κ

r
1, κ

r
2

)
× IG

(
σ2
γ;κ

γ
1 , κ

γ
2

)
× IG

(
σ2
a;κ

a
1, κ

a
2

)
,

(10)

where Nt+1 is the number of firms at time t + 1, Nd is the number of industries, and rFit+1

is defined in (6). In equation (10), X ≡ {Xit; i = 1, · · · , Nt, t = 1, · · · , T} is the panel of
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fundamental observables, rS and rBa are the panels of realized stock and bond returns, and

N (· ;µ, σ2) and IG(· ;κ·1, κ·2) refer to the probability density functions of normal distribution

with mean µ and variance σ2 and inverse gamma distribution with shape-scale parameters

κ1 and κ2, respectively. We run 20,000 MCMC iterations and use the last 5,000 iterations to

obtain posterior draws. We confirm the convergence of the posterior distributions. Section

B in the Internet Appendix details the sampling algorithm and posterior derivations.

3.2.2 Comparison of Bayesian MCMC with GMM and NLS Our MCMC

estimation approach is fundamentally different from the estimation method in Liu, Whited

and Zhang (2009) and Gonçalves, Xue and Zhang (2020), among others, and it offers

several advantages. First, our estimates of parameter values are independent of any specific

testing portfolios. We utilize the entire distribution of firm-level stock returns to estimate

model parameters, while GMM matches the time-series averages of returns on testing

portfolios. This feature is critical for addressing the critique of Campbell (2017) that the

parameter values of the model are chosen to fit a specific set of anomalies and different

values are required for different anomalies.

Second, our MCMC algorithm generates random draws of model parameters from their

joint posterior distribution given the observations on firms’ stock and bond returns and

fundamentals, while GMM outputs point estimates of model parameters, which are

deterministic given the same set of observations. One advantage of our Bayesian approach

is that probabilistic inferences for the estimated parameters and fundamental stock returns

can be easily made using posterior draws from the MCMC iterations.

Third, given the vast amount of information in firm-level stock returns exploited by our

Bayesian MCMC estimation, we are able to accurately identify the true values of model
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parameters even for the specification where these parameters vary across industries and

over time. This feature can be extremely important when the modeled economy is highly

heterogeneous and changing over time. With the Fama-French 10-industry classification,

we estimate 2 × 500 latent variables for the sample between 1967 to 2016. Although the

number of latent variables is small compared to the number of observations used in our

estimation (136, 598), it is extremely difficult to estimate them via either GMM, or a

maximum likelihood based approach. Prior studies thus assume constant parameter values

in general.

Lastly, the frequentist method Nonlinear Least Squares (NLS) can also be used to

estimate industry-specific and time-varying parameters using firm-level stock returns as

follows:

θ̂NLSjt+1 = arg min
θjt+1

Njt+1∑
i=1

$it

[
f
(
Xit, Xit+1|θ̂NLSjt , θjt+1

)
− rSit+1

]2

, (11)

where Njt+1 is the number of firms in industry j at time t + 1, θ̂NLSjt is the estimated

parameters for industry j at t, and $it−1, which is proportional to the market equity Vit−1

as defined in equation (9). However, only the information of industry j at time t is used

to identify θ̂NLSjt+1 s. In contrast, the posterior of an industry-time specific parameter, θjt, in

Bayesian MCMC utilizes the information of the entire data sample. The reasons are as

follows. First, the random walk process imposed on parameters in equation (7) connects

information across different points in time. Second, physical adjustment costs parameter ajt

enters into the probability distributions of both rit and rit+1 of firm i in industry j as shown in

equations (2) and (10), which also connects information in returns across time. Third, due to

entry and exit, the probability distribution of stock return rit+1 can also connect information

in returns across industries if firm i switches from industry j to k at time t+1. Consequently,
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the identification of any specific latent variables ajt and γjt utilizes the information of the

entire data sample.12

We use simulation studies to examine whether Bayesian MCMC can discover the true

parameter values under our model framework, which is highly nonlinear, and also compare

the performance of Bayesian MCMC and NLS.13 The results show that Bayesian MCMC

performs very well for our highly nonlinear model and is able to discover the true parameter

values under all four specifications, while NLS often fails to discover the true parameter

values that are time-varying. The details of the simulation studies are included in Section E

of the Internet Appendix.

4 Parameter estimation and performance evaluation

We conduct estimations of four model specifications: constant parameters, industry-specific

parameters, time-varying parameters, and industry-specific and time-varying parameters.

We discuss whether the estimated parameter values make economic sense and compare the

performance of these four specifications in terms of matching firm-level stock returns.

4.1 Parameter estimates

Our estimation generates the posterior distributions of the marginal product parameter γ

and the physical investment adjustment costs parameter a. For each parameter estimate, we

report its posterior mean and credible interval (CI), the latter of which refers to the interval

12Even though γjt enters into the probability distribution of stock return rit only for firm i in industry j
at time t, γjt is identified together with ajt. Therefore, the value of γjt also reflects the information of the
entire data sample.

13Detailed discussion on the differences between Bayesian and NLS, and the comparison of their estimation
accuracy under our model framework are provided in Section D of the Internet Appendix.
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wherein a posterior draw of the parameter falls with the specified probability. A small CI

indicates that the parameter is accurately estimated. 14

Panel A of Table 3 shows that under the specification with constant parameters, the

posterior mean of γ is 0.15 with a CI of [0.15, 0.15] and the posterior mean of a is 0.14 with

a CI of [0.13, 0.14]. These narrow CIs indicate that the parameter values are identified with

high precision due to the simple model structure (only two structural parameters) and the

large amount of information (136,598 firm-level observations).

Panels B to D present estimation results under the speciations with industry-specific

parameters, time-varying (industry invariant) parameters, and industry-specific and time-

varying parameters, respectively. For specifications with time-varying parameters (Panels C

and D), we report the time-series averages of the posterior means and 95% credible intervals

of γ and a and their time-series standard deviations under Columns σγ and σa. Several

observations emerge. First, parameters are accurately estimated with narrow CI’s even when

parameters vary over time and across industries. This result highlights that the Bayesian

MCMC is able to extract large amount of information from firm-level stock returns and

precisely identify the parameter values even when they are industry-specific and time-varying.

Second, allowing time variation in parameters is crucial for getting unbiased estimates

when the underlying model is nonlinear in these parameters. When time variation is shut

down, the estimates of γ (in Panels A and B) are close to the time series average of their

time-varying counterparts (in Panels C and D). In contrast, we see large changes in the

estimates of a when time variation is shut down. For example, the posterior mean of γ for

14Formally, the posterior credible interval Ip of parameter θ satisfies P (θ ∈ Ip|X, rS , rBa) = p, where
p is the probability. A credible interval is the Bayesian equivalent of the confidence interval in frequentist
statistics. A credible interval is the Bayesian counterpart of the confidence interval in frequentist statistics.
Confidence intervals treat the estimated parameter as a fixed value and the bounds are random variables due
to random sampling, whereas credible intervals treat the parameter as a random variable and the credible
bounds are determined by the derived posterior distribution.
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Business Equipment sector is 0.23 in Panel B, which is the same as its time-series average in

Panel D. However, the posterior mean of a for Business Equipment sector is 0.78 in Panel

B, less half of its time-series average of 1.78 in Panel D. The reason is that model-implied

return is a linear function of γ but a nonlinear function of a as shown in equation (6). If the

true value of the parameter is time-varying, when information is aggregated along the time

dimension, a nonlinear relation used for the estimation often generates an estimate that is

far away from its time-series average.

Third, the parameter estimates differ greatly across industries. For example, under the

specification with industry and time variations (Panel D), γ is estimated to be 0.08 on

average with a CI of [0.07, 0.09] for the wholesale & retail sector, compared to 0.28 for the

telecom sector, consistent with the fact that capital is less important for the wholesale &

retail sector than for the telecom sector. The average posterior mean of a ranges from 0.25

for Utilities to 1.78 for Business Equipment. As explained in Erickson and Whited (2000),

it can be misleading to interpret the value of a in terms of adjustment costs or speeds. We

thus gauge the economic magnitude of this parameter in terms of value-weighted average of

model-implied marginal q for physical capital, i.e., qK (marginal q for working capital is one

in our model). Table 3 shows that the business equipment sector has the highest qK of 1.53

while the utilities sector has the lowest qK of 1.02. Hence, these estimates of a are consistent

with our intuition that the business equipment sector, which includes the high-tech firms, has

the highest growth potential while the regulated utilities sector has the lowest potential for

growth. Similar cross-industry variations in parameter values can be observed from Panel B,

which reports the estimation results under the specification with industry-specific but time

invariant parameters.

Overall, Table 3 shows that there are large variations in parameter values across industries
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and over time. Estimations that fail to recognize heterogeneities in parameter values could

lead to vastly different estimates from the sample average of their true values if the underlying

model is nonlinear. Bayesian MCMC is a useful tool for such scenarios.

4.1.1 Comparison with parameter estimates in Gonçalves, Xue and Zhang

(2020) Gonçalves, Xue and Zhang (2020) argue that when portfolio fundamental returns

are aggregated from firm-level fundamental returns, their parameter estimates become

more stable and less dependent on the testing portfolios. In their baseline estimation

targeting the average returns of the value, momentum, investment (I/A), and profitability

(ROE) decile portfolios, γ is 0.18 (std = 0.019) and a is 2.84 (std = 0.47). Panel A of

Table 3 shows that when matching firm-level stock returns directly using the same model

and same data sample, the posterior means of a, 0.14 with a CI of [0.13, 0.14], is almost 20

times smaller than that in Gonçalves, Xue and Zhang (2020), although our estimates of γ,

0.15 with a CI of [0.15, 0.15], are quite close to theirs. The result echos our previous

discussion that aggregation of information in estimation, which is along the cross section in

Gonçalves, Xue and Zhang (2020)’s case, can lead to very different estimate of the

parameter when the underlying model is a nonlinear function of the parameter.15 Our

results indicate that Campbell (2017)’s critique continues to be a serious concern even if

portfolio returns are aggregated from model-implied firm-level stock returns as in

Gonçalves, Xue and Zhang (2020).

How reasonable are our estimates of adjustment cost parameter a? Regardless of the

15In fact, Panel B of Table 3 in Gonçalves, Xue and Zhang (2020) shows that their parameter estimates
still show substantial variations with the testing portfolios in their baseline estimation, especially for the
adjustment cost parameter a. For example, estimates of γ range from 0.1337 to 0.1762 when matching the
average returns of the ten decile portfolios sorted on book-to-market (BM), prior 11-month returns (R11),
asset growth (I/A), and return on equity (ROE), respectively. In contrast, estimates of a range between 1.63
to 8.11.

25



specification, our estimates of a reported in Table 3 are much smaller than the estimates

in Gonçalves, Xue and Zhang (2020). Depending on methods and datasets, estimates of a

in the literature range from over 20 (Hayashi, 1982) to essentially zero (Hall, 2004). Our

estimates of adjustment cost parameter a are fairly close to the estimates in the influential

work by Cooper and Haltiwanger (2006). By matching the serial correlation of investment

rates, correlation of profit shocks and investment rates, and positive and negative investment

spike rates,16 Cooper and Haltiwanger (2006) estimate that the quadratic adjustment cost

parameter is 0.455 when only quadratic adjustment cost is present and the value drops to

0.049 when non-convex adjustment costs are added. These estimates appear extremely low

compared to prior estimates based on investment-q regressions (for example, 20 in Hayashi

(1982) and 3 in Gilchrist and Himmelberg (1995)). Using simulated data, Cooper and

Haltiwanger (2006) show that due to measurement errors in average q, the coefficient on

average q in a regression of investment rates on a constant and average q implies an estimate

of a 100 times as large as its true value.

In sum, using firm-level return data in estimation seems to generate estimates of a smaller

than those estimated with portfolio-level return data (Liu, Whited and Zhang, 2009; Liu

and Zhang, 2014; Gonçalves, Xue and Zhang, 2020, among others). When comparing to

estimates in the literature without using return data, our estimates are close to the ones

based on structural estimation of investment models (Cooper and Haltiwanger, 2006; Hall,

2004, among others) instead of the investment-q regression.

4.1.2 Do the time variations in parameter estimates make economic sense? In

this subsection, we investigate whether the estimates of the production function curvature

parameter γ and the investment adjustment cost parameter a are consistent with their

16Cooper and Haltiwanger (2006) define episodes of investment rates in excess of 20% spikes.
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economic underpinning. Within the model framework, γjt reflects industry j’s profit margin

as the model implies Πit = γjtYit for any firm i in industry j at time t, where Πit and Yit

are the profits and sales, respectively. In reality, variations in γjt can be driven by both

technology changes and changes in market demand, the latter of which can be caused by

fluctuations in consumer taste, economic conditions, market competitiveness, etc.

If the estimated values of γ indeed capture the aforementioned economic, these

estimates should be positively correlated with the variations in operating profits-to-sales

ratio across industries and times. Specifically, the following regression should yield a

positive and significant coefficient on γjt:

Π/Y jt = cγ + bγ γjt + εγjt , (12)

where the dependent variable is the value-weighted operating profits-to-sales ratio for

industry j at time t, defined as Π/Y jt ≡
∑Njt

i=1$it−1(Πit/Yit), the independent variable is

the estimated value of γ for the same industry and time, and cγ and bγ are regression

coefficients. Operating profits is measured by operating income before depreciation (item

OIBDP). The weight $it−1 is proportional to the market equity Vit−1 as defined in equation

(9), and is used to be consistent with the fact that the variance of estimation error is

assumed to be proportional to the inverse of $it−1 in equation (8). If our model is the true

model, we would expect cγ and bγ to be zero and one, respectively.

In terms of the investment adjustment cost parameter a, equation (5) implies that

Tobin’s q of firm i in industry j at time t follows

qit = 1 + ajt(1− τt)Iit/Kit ×Kit+1/(Kit+1 +Wit+1). Therefore, the magnitude of ajt reflects

both the marginal costs and marginal benefits of investing one dollar in physical capital
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and has a positive relation with Tobin’s q. Consequently, variations in ajt can be driven by

changes in production technology, price of capital goods, which is cyclical (Eisfeldt and

Rampini, 2006), and opportunity costs in terms of lost output, which vary with procyclical

capacity utilization. Lastly, entry and exit in an industry can also lead to changes in the

estimated parameter values of this industry at a given fiscal year t.

Similarly, variations in the estimated values of a should positively correlate with the

variations in average Tobin’s q across industries and over time since investment rate at the

industry level is on average positive. Specifically, the following regression should yield a

positive and significant coefficient on ajt:

qjt = ca + ba ajt + εajt . (13)

where the dependent variable is the value-weighted Tobin’s q, defined as qjt ≡
∑Njt

i=1$it−1qit,

for industry j at time t. We expect the coefficient on ajt to be significantly positive.

We conduct regressions (12) and (13) using the firm-year panel between 1965 and 2017.

Table 4 shows that bγ is 0.13 with t-stat being 6.10 and ba is 0.19 with t-stat being 3.60,

both of which are positive and highly significant. The adjusted R-squareds are 0.078 and

0.023, respectively. These results confirm that our estimates of γ and a indeed capture the

industry-time variations in firm’s profitability and Tobin’s q in the economically sensible

way, both of which are not directly used in the estimation.

4.2 Overall fit of the estimation

In this subsection, we compare a set of key moments of the realized and fundamental firm-

level stock returns to gauge the overall fit of the four estimation specifications. Table 5 reports
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the posterior means and 95% credible intervals of the mean, standard deviation, skewness,

kurtosis, the time-series average of the cross-sectional correlations between fundamental and

realized stock returns, and the mean absolute error (m.a.e.) for the specifications with

constant, industry-specific, time-varying, and industry-specific and time-varying parameter

values.17 The m.a.e. is defined as

m.a.e. ≡ 1

T

T−1∑
t=0

1

Nt+1

Nt+1∑
i=1

|rSit − rFit | , (14)

where Nt+1 is the number of firms in period t + 1, and rS and rF are the realized and

fundamental stock returns, respectively. The same moments of the realized stock returns are

presented for comparison.

Several observations emerge from Table 5. First, the mean, skewness and kurtosis of the

fundamental returns match well with those of the realized returns across all four

specifications. The mean of fundamental stock returns ranges from 14.97% to 15.65%

across specifications, compared to 14.45% in the data. The skewness ranges from 1.66 to

2.12, compared to 2.15 in the data, and kurtosis ranges from 10.66 to 13.33 compared to

11.05 in the data. Second, standard deviations of the fundamental returns are much

smaller than that of the realized one. The specification with industry-specific and

time-varying parameters generates the highest standard deviation 34.17%, compared to

60.78% in the data, while the specification with industry-specific parameters generates the

lowest standard deviation, 18.49%. Third, the time-series average of the cross-sectional

correlations between realized and fundamental firm-level stock returns is highest for the

specification with industry-specific and time-varying parameter values (0.20), and lowest

17Given firm-level accounting variables, each posterior draw of θ = {θt; t = 1, · · · , T} leads to a panel of
firm-level fundamental returns and any statistical moments of these returns.
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for the specifications with constant parameter values (0.09). Lastly, the m.a.e. is lowest for

the specification with industry-specific and time-varying parameter values (40.10%),

followed in turn by the specifications with time-varying (40.85%), industry-specific

(41.85%), and constant parameter values (42.45%).18

Figure 1 plots the histograms of realized (in blue) and fundamental (in orange) firm-level

returns based on the posterior means of the parameter estimates under the four specifications.

Consistent with what Table 5 shows, realized returns have a much wider distribution than

fundamental returns at both left and right tails and thus have a larger standard deviation.

Both the realized and the four fundamental distributions have longer right tails, resulting

in positive skewness and kurtosis larger than 3. Next, we conduct a rigorous comparison in

performance among the four specifications.

4.3 Performance comparison of the four specifications

We evaluate the performance of each specification based on the the mean absolute error

(m.a.e.) of the fundamental firm-level stock returns. Different from GMM, which gives

point estimates of the parameters, Bayesian MCMC offers a probabilistic view of the

parameters and thus the fundamental returns. Given firm-level accounting variables, each

posterior draw of θ = {θt; t = 1, · · · , T} leads to a panel of firm-level fundamental returns.

Therefore, our estimation generates posterior distributions of the fundamental returns and

any statistical moments of these returns. Based on the posterior distribution of the m.a.e.

under each specification, we test whether the differences in m.a.e. of the four specifications

18For comparison, we report the same statistics of the NLS estimation for the four specifications in Table
A.1 in the Internet Appendix. Bayesian MCMC results in a smaller m.a.e. in every specification, echoing
the superior performance of Bayesian approach compared to NLS documented in Sections E and D of the
Internet Appendix.
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are statistically significant using the following statistic:

da =
1

T

T−1∑
t=0

1

Nt+1

Nt+1∑
i=1

(∣∣∣rSit+1 − r
F (a)
it+1

∣∣∣− ∣∣∣rSit+1 − r
F (b)
it+1

∣∣∣) , (15)

where rF (b) and rF (a) are the fundamental returns under the benchmark specification, defined

as the one with the lowest m.a.e. (i.e., specification with industry-specific and time-varying

parameters), and under an alternative specification, a, respectively. Note that although our

statistic is similar in form to Diebold-Mariano (1995), they differ in nature by statistical

properties. However, taking advantage of MCMC, we can still make a valid inference from

this statistic. Intuitively, when the estimation errors from the alternative specification are

larger in magnitude, we expect da to be above 0 with statistical significance. Following

equation (15), we record da(m) for the m-th posterior draws of parameter values. These

5, 000 posterior draws jointly provide us with the empirical distribution of the statistic da.

A significantly positive da indicates that the benchmark specification performs significantly

better than the alternative specification a in explaining firm-level stock returns.

Figure 2 plots the distribution of da for each of the three alternative specifications all in

one panel in Panel (a) and separately in Panels (b) to (d). The 2.5, 50, and 97.5 percentiles

of the posterior distributions are also marked in the last three panels. We can see that the

posterior distributions of these three settings all lie in the positive region. Neither of the

three 95% credible intervals ([1.80, 1.90], [1.22, 1.32], and [0.57, 0.67] for the specifications

with constant, industry-specific, and time-varying parameter values) includes zero, indicating

that the baseline performs significantly better in explaining the firm-level stock returns than

these alternative specifications. Moreover, the location of these distributions in Panel (a)

indicates that the performance of the model with time-varying parameters is closest to the
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benchmark, followed by the settings with industry-specific parameters and with constant

parameters.

In sum, the specification with industry-specific and time-varying parameters has

significantly better performance in matching firm-level stock returns than the other three

specifications. In addition, time variation is more crucial to the superior performance than

industry variation. Hereafter, we use the specification with industry-specific and

time-varying parameter values as the baseline for the analysis of stock market anomalies.19

5 Fundamental anomalies

In this section, we construct the fundamental returns for a set of well-documented and

robust anomalies. We choose these anomalies based on the replication study by Hou, Xue

and Zhang (2020), who replicate 452 anomalies, classified in six categories: the momentum,

value versus growth, investment, profitability, intangibles, and trading frictions. They show

that for the sample period as ours, from June 1967 to December 2017, only 153 anomalies can

be successfully replicated.20 We then choose 12 anomalies, covering all six categories, that

are most widely studied in the literature and can be successfully replicated in our sample

period. More importantly, investment-based asset pricing models have been suggested by

prior studies to explain these anomalies: value anomaly sorted on book-to-market equity

ratio (BM); momentum anomaly sorted on the prior 11-month returns skipping the most

recent month (R11); four investment anomalies sorted on asset growth (I/A), net stock

issues (NSI), investment-to-assets ratio (∆PI/A), and accruals (Accruals); three profitability

19The analysis of stock market anomalies under the specifications with constant, industry-specific, and
time-varying parameters are presented in the Internet Appendix.

20The replication of an anomaly is successful if the average return of its high-minus-low decile is significant
at the 5% threshold based on portfolio sorts with NYSE breakpoints and value-weighted returns.
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anomalies sorted on return-on-equity (ROE), return-on-assets (ROA), and gross profitability

(GP/A); and two intangibles anomalies sorted on R&D expenses-to-market ratio (RD/M)

and advertising expenses-to-market ratio (Ad/M), and one trading frictions anomaly sorted

on market capitalization (Size).21 In addition, prior literature has proposed investment-

based asset pricing models as potential explanations for these anomalies. We ask whether

the model-implied fundamental returns exhibit the same return regularities when the model

parameters are estimated to match firm-level stock returns.

5.1 Anomaly premiums

Figure 3 plots the posterior distributions of the 12 fundamental factor premiums under

the baseline estimation and labels the 2.5, 50, and 97.5 percentiles of each distribution.

For example, the posterior distribution in Panel “BM” indicates that, given the observed

accounting variables and provided that the model is correctly specified, the fundamental

value premium per annum falls in the range between 0.31% and 0.60% with 95% probability

and the posterior median is 0.46% per annum. The red line in each panel presents the

density function of a normal distribution with mean and standard deviation taken from the

corresponding posterior distribution. Notice that the posterior distributions are very much

close to normal distribution, indicating that our Bayesian MCMC algorithm converges well.

In cases where the Bayesian MCMC algorithm does not converge, the posterior distributions

typically would have multiple peaks or/and long and fat tails. Moreover, the credible intervals

of the fundamental factor premiums are extremely narrow. As we argue before, these tight

posterior distributions indicate that the simplicity of the model and the richness of firm-level

21Hou, Xue and Zhang (2020) show that almost all well-known anomalies in the trading frictions category
cannot be successfully replicated. For completeness, we include the Size anomaly from this category since it
is one of the most widely studied anomalies in the literature.
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information confine the parameter estimates and the fundamental factor premiums to a small

set of possible values.

Table 6 presents the realized and fundamental (value-weighted) factor premiums under

the baseline estimation, their t-values, and the t-values of the difference between realized

and fundamental factor premiums, denoted as alpha, α ≡ rS − rF .22 For each statistic of

the fundamental factor premiums, we report its posterior mean and the 95% credible

interval. Note that the credible intervals and t-values of the factor premiums measure

different types of variability. For example, the t-value of the fundamental value premium,

t
(
rF
)
, measures the time-series variability of the fundamental returns on the

high-minus-low book-to-market portfolio generated by a given posterior draw of parameter

values, which reflects how significant the corresponding fundamental value premium is. In

contrast, the credible interval of the fundamental value premium indicates the range of

model-implied values given the observed firm fundamentals but allows all possible posterior

draws of parameter values. We conclude that a given anomaly exists in fundamental

returns if its fundamental anomaly premium is significant at the 5% level (the absolute

t-value, |t| > 1.96) with a posterior probability higher than 95%. That is, the 95% credible

interval of t(rF ) is on the right of 1.96 if t(rF ) > 0 and on the left of −1.96 if t(rF ) < 0.

Table 6 shows that the model is able to generate significant momentum (R11),

investment (I/A, NSI, and ∆PI/A), profitability (ROE, ROA, and GP/A), intangibles

(R&D and advertising), and size premiums. The t-values of these premiums all have

credible intervals larger than 1.96 (indicating 5% significance level) in absolute value. In

22Since rS is deterministic, the posterior distributions of the alphas have the same shape as the
distributions of the corresponding fundamental factor premiums rF . For completeness, we report the
fundamental anomaly premiums and their corresponding alphas in Table A.2. We analyze the importance
of industry and time variations in parameter estimates in term of generating anomaly premiums in Section
5.3.
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general, the t-values of the fundamental anomaly premiums are larger than their

counterparts in the data due to the low variability of fundamental returns. For example, in

terms of the posterior means, the fundamental momentum premium is 11.82% per annum

with a t-value of 12.51, while its value is 13.75% (t = 4.15) in the data. In terms of

matching the magnitude of the realized anomaly premiums, the alphas of seven out of ten

anomalies are insignificantly different from zero, while the alphas of three anomalies, I/A,

NSI, and GP/A, are significant at the 5% level.

However, the model fails to generate significant premiums for value and accruals

premiums that are consistent with the data. The model generates positive but statistically

insignificant value premium. The posterior means of the fundamental value premium is

0.46% per annum (CI=[0.31%, 0.60%]) with a t-value of 0.26 (CI=[0.18, 0.35]). The

fundamental accruals premium is 4.74% (t = 4.45) in contrast to −5.58% (t = −3.14) in

the data. We explore possible explanations for this failure later in Section 5.3.

Note that our results contrast sharply with the findings of Gonçalves, Xue and Zhang

(2020) who show that the same model can generate fundamental value and I/A premiums

with insignificant alphas (t-values being 1.37 and −0.04) in the same sample period. The

difference is that Gonçalves, Xue and Zhang (2020) estimate model parameters using the

value, I/A, R11, and ROE deciles as testing portfolios, which improves the model’s

performance in terms of matching the value and I/A premiums. 23 This comparison

validates Campbell (2017)’s critique and highlights the importance of using

portfolio-independent parameters to evaluate the capability of a model in generating stock

market anomalies.

23Our baseline estimation allows parameters to vary across industry and time. When the model with
constant parameters, as the one in Gonçalves, Xue and Zhang (2020), are estimated to match firm-level
stock return, the model performs even worse in terms of generating value, I/A, R11, and ROE premiums:
only the alpha of the ROE premium is insignificantly different from zero. Results are available upon request.
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5.2 Dynamics of factor premiums

In this section, we use the fundamental returns implied from the baseline estimation to study

the dynamics of factor premiums, including the correlation between realized and fundamental

portfolio returns, the persistence of the factor premiums, and the relation between the factor

premiums and market states. Fundamental stock returns in this subsection are computed

based on the posterior means of parameter values under the baseline specification. Given

that the posterior distribution is extremely narrow, the results in this subsection can be

largely carried over to any set of parameter values within the 95% credible interval of the

posterior distribution.

5.2.1 Correlation between realized and fundamental portfolio returns In this

subsection we examine how well the fundamental returns of these anomaly deciles match the

dynamics of their counterparts in the data. Table 7 reports the contemporaneous correlations

between the realized and fundamental returns on the 120 decile portfolios and the 12 high-

minus-low decile portfolios for the 12 anomalies. The fundamental and realized portfolio

returns are all highly correlated and the correlation coefficients are all significant at the 1%

level. The average correlation is 0.69 for decile portfolios and 0.43 for the high-minus-low

deciles.

An interesting observation is that although the model implies a tiny value premium and

an accruals premium with the wrong sign, the fundamental returns on the BM and accruals

deciles are highly correlated with the realized ones. The correlations of these 20 deciles range

between 0.63 and 0.78, and the correlations of the high-minus-low deciles are 0.53 for BM

and 0.41 for accruals. This contrasts sharply with the corresponding correlations reported

in Panel B of Table 6 in Gonçalves, Xue and Zhang (2020). Their model generates much
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higher correlations for the high, low, and high-minus-low portfolios than the deciles in the

middle. For example, the correlations between the fundamental and realized returns on the

low, high, and high-minus-low I/A deciles are 0.19, 0.30, and 0.42, respectively, all of which

are highly significant. In contrast, the correlations for deciles two to nine range from −0.03

to 0.12, none of which are significant.

Figure 4 plots the time-series returns of the 12 high-minus-low deciles. The

fundamental and realized decile returns show strong comovements, consistent with the

reported high correlations in Table 7. Overall, our model with the baseline estimation

matches the dynamics of these 12 anomaly portfolios very well. It also generates significant

premiums for a large set of anomalies, but fails to generate value and accruals premiums.

Next, we explore the reasons behind the successes and failures of the model.

5.2.2 Persistence of factor premiums One important aspect of a factor premium

is its persistence, which varies greatly across anomalies. Figure 5 presents the event-time

dynamics of the realized (top of each panel) and fundamental returns (bottom of each panel)

for the high and low deciles during the 36-month period after the portfolio formation for each

anomaly. The momentum, ROE, and ROA premiums diminish within 12 months after the

portfolio formation, while the other premiums subsist much longer. The model succeeds

in reproducing the short-lived nature of the momentum, ROE, and ROA premiums, as

well as the long-lived nature of the rest with the exception of the accruals premium. The

accruals premium lasts for 18 months in the data while there is no noticeable decrease in

the fundamental premium after 36 months. Given that the model cannot get the sign of the

accruals anomaly right, it is not surprising that the model cannot explain the persistence

either.

37



5.2.3 Factor premiums and market states The performance of long-short anomaly

strategies often varies with the market conditions due to cyclical changes in firm

fundamentals and market risk premiums. For example, Gonçalves, Xue and Zhang (2020)

show that value and investment premiums are counter-cyclical while momentum and

profitability premiums are procyclical. Following Gonçalves, Xue and Zhang (2020), we

define up market as periods following nonnegative prior 36-month market returns and

down market as periods following negative prior 36-month market returns, and examine

the cyclicality of the 12 factor premiums.24

Table 8 shows that the momentum, ROE, NSI, GP/A, and ROA premiums exhibit

strong pro-cyclicality, while the BM, I/A, size, ∆PI/A, and Ad/M premiums exhibit

counter-cyclicality. In contrast, the fundamental premiums show less variations between up

and down states, but they do exhibit the same cyclicality as those of the realized

premiums. For example, the momentum premium is 18.51% following up markets but

−12.99% following down markets. The contrast is 12.43% versus 8.77% for the

fundamental momentum premium.

The realized RD/M premium does not show significant dependence on market states,

being 8.61% following up markets and 9.53% following down markets. However, the

predicted RD/M premium exhibits strong pro-cyclicality, being 6.12% versus −1.54%. This

discrepancy highlights the importance of modeling R&D explicitly in order to capture the

time-series dynamics of the RD/M premium. In the current model, R&D investment is not

directly modeled and its influence on stock returns is bridged by its correlations with

profitability and investments in physical and working capitals. Finally, the predicted

accruals premium continues to show opposite signs as those of the realized one, following

24Results do not change qualitatively when up and down markets are defined based on prior 12- or
24-month market returns.
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both up and down markets.

5.3 Inspecting the economic mechanism

In this section, we first conduct comparative statics to quantify the importance of firm

characteristics and industry-time variations in parameter values in generating fundamental

return anomalies. We then investigate possible explanations why the model fails to generate

the value and accruals premiums.

5.3.1 Comparative statics The set of firm characteristics includes lagged

invest-to-physical capital ratio Iit/Kit, current invest-to-physical capital ratio Iit+1/Kit+1,

current sales-to-physical capital ratio Yit+1/Kit+1, and current working-to-physical capital

ratio Wit+1/Kit+1, all of which affect stock returns rFit+1 as indicated by equation (6). We

then explore possible explanations why the model fails to generate the value and accruals

anomalies.

Intuitively, the importance of a firm characteristic to a specific anomaly premium depends

on (1) the spread in this characteristic among high and low deciles; (2) sensitivity of firm-

level return to this characteristic. For example, for the I/A premium, firms in its high and

low deciles differ most in lagged investment rate Iit/Kit, because the I/A deciles are sorted on

asset growth rate, which is highly correlated with the firm characteristic Iit/Kit.
25 Naturally,

we would expect that Iit/Kit is most crucial for generating the I/A premium. Based on

equation (6), firm-level stock return is more sensitive to investment rate if the adjustment cost

parameter a is large, and more sensitive to profitability (Y/K) if the production curvature

25Table A.3 in the Internet Appendix shows the average firm characteristics for decile portfolios of the
12 anomaly variables. For example, with respect to the I/A low and high deciles, Iit/Kit is 0.26 vs. 0.53,
Iit+1/Kit+1 is 0.28 vs. 0.40, Yit+1/Kit+1 is 8.75 vs. 8.43, and Wit+1/Kit+1 is 4.40 vs. 4.19.
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parameter γ is large.26 Thus, the I/A premium is likely to increase with the magnitude of

a. From the same reasoning, Yit+1/Kit+1 is likely to be more important for anomalies sorted

on profitability measures if the magnitude of γ is larger.

To conduct comparative statics on a firm characteristic, for example, Iit/Kit, we set

Iit/Kit to be its cross-sectional median at period t across all firms and use the parameter

estimates from the baseline estimation to reconstruct the fundamental returns. We then

recalculate the fundamental anomaly premiums for the 12 anomalies and the corresponding

alphas. If the resulting alphas are large relative to those from the baseline estimation, we

can infer that the Iit/Kit spread is quantitatively important to explain the average return

spreads. The comparative statics with respective to Iit+1/Kit+1, Yit+1/Kit+1, and

Wit+1/Kit+1 are designed analogously. To quantify the importance of industry and time

variations in parameter values, we shut down the time and industry variations, separately,

in parameter values in estimation (namely, specifications θj and θt), and compare the

resulting alphas with those from the baseline estimation. The results are presented in

Table 9 and we summarize the main findings below.

Firstly, profitability Yit+1/Kit+1 is more important than lagged investment rate Iit/Kit

for all 12 anomalies, even for anomalies sorted on investment measures (I/A, NSI, and

∆PI/A). For example, when firm heterogeneity in Iit/Kit is turned off, alpha of the

fundamental I/A premium becomes −9.88 percent per annum, which is −3.16 in the

baseline. In comparison, the I/A alpha becomes 5.53 when heterogeneity in Yit+1/Kit+1 is

turned off. Previous literature often finds that heterogeneity in lagged investment rate is

the key driver of anomalies sorted on investment measures (for example, Liu, Whited and

Zhang 2009 and Gonçalves, Xue and Zhang 2020). The reason behind this difference is

26Section 5.3 in the Internet Appendix provides the proof on the relation between fundamental return
and firm characteristics, and the sensitivity of this relation to the parameter values.
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that our estimates of a are generally smaller than previous estimates as discussed in

subsection 4.1.1, which decreases the importance of investment rate to stock returns.

The importance of Yit+1/Kit+1 relative to Iit/Kit is more pronounced for anomalies sorted

on profitability measures (ROE, ROA, and GP/A) as expected. Yit+1/Kit+1 is also the most

important factor to generate anomalies sorted on intangibles, sorted on R&D expenses-to-

market ratio (RD/M) and advertising expenses-to-market ratio (Ad/M). Neither RD/M nor

Ad/M appears in the model-implied relation between stock return and firm fundamentals in

equation 6. However, Table A.3 in the Internet Appendix shows that high RD/M (Ad/M)

firms have higher profitability than low RD/M (Ad/M) firms, with Yit+1/Kit+1 being 9.14

(10.47) compared to 6.92 (7.54), which implies positive fundamental intangible premiums.

Secondly, for all 12 anomalies, heterogeneity in firm characteristics is more important

for generating anomaly premiums than heterogeneity in parameter values. Shutting down

industry or time variations in parameter value never leads to larger deviation from the

baseline alphas compared to shutting down variations in firm characteristics. In addition,

shutting down industry or time variations generate smaller alphas than the baseline

specification for some anomalies. For example, shutting down time variation decreases the

magnitude of alphas for the size, GP/A, and Ad/M anomalies, while shutting down

industry variation decreases the magnitude of alphas for the ROE, ROA, and NSI

anomalies.

In sum, our results show that for generating the 12 anomaly premiums, firm fundamental

characteristics are more important than variations in parameter values. And among these

fundamental characteristics, sales-to-capital ratio Yit+1/Kit+1 is more important than the

investment rates Iit/Kit and Iit+1/Kit+1. Next, we investigate possible reasons why the

model fails the value and accruals anomalies.
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5.3.2 The value premium Prior studies with similar or same models (Liu, Whited and

Zhang, 2009; Gonçalves, Xue and Zhang, 2020) find that the differences in lagged investment

ratio Iit/Kit between value and growth firms contribute the most to the value premium. Table

A.3 in the Internet Appendix shows that the largest difference between value and growth

firms is that growth firms have higher lagged and current investment rate. However, since

our estimated adjustment cost parameter is small, this difference in investment rate is not

able to generate large enough return spread. We next discuss possible reasons why the model

fails to generate the value premium.

Asymmetric adjustment costs — In our baseline model, we assume adjustment cost of

investments to be symmetric and quadratic to be consistent with Gonçalves, Xue and Zhang

(2020) for comparison. However, there is a large literature that argues that asymmetric

adjustment costs are critical for explaining the observed investment dynamics (Abel and

Eberly, 1994; Cooper and Haltiwanger, 2006) and could be a driver for the value premium

(Zhang, 2005). We thus consider two versions of asymmetric adjustment costs. The first

version is to keep the quadratic form but allow parameter ajt to have different values for

positive and negative investments, denoted as a+
jt and a−jt,

27

Φ(Iit, Kit) =
a+
jtIIit>=0 + a−jt(1− IIit>=0)

2

(
Iit
Kit

)2

Kit

where IIit>=0 is an indicator equals to one if investment is positive and to zero otherwise.

Following Belo et al. (2022), our second version of asymmetric adjustment costs function is

27Our estimation is based on equation (6), which is derived from the first order condition of firm’s optimal
investments and holds only if investment is not zero. When investment is zero, firm’s optimization problem
does not have an interior solution and the first order condition fails to hold. However, in the data the
observations with zero investment are rare, less than 0.1% of the sample. We thus ignore these observations
in the estimation.
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smooth and homogeneous of degree one in investment and capital (Belo et al., 2022):

Φit ≡
θjt
ν2
jt

[
exp

(
−νjt

Iit
Kit

)
+ νjt

Iit
Kit

− 1

]
,

where θjt for industry j at time to t is positive and disinvestment is more costly than

investment if νjt > 0. The relation between fundamental stock return rFit and firm

characteristics under these two versions of asymmetric adjustment costs are provided in

Section A.3 of the Internet Appendix.

As in our baseline estimation, we allow the adjustment cost parameters to be

industry-specific and time-varying. Table A.4 in the Internet Appendix presents the

time-series averages of the posterior means and 95% credible intervals (CI) for each

parameter and for each industry. In general, adjustment costs parameters for negative

investments are larger than those for positive investments: a− is larger than a+ for all

industries except for the business equipment sector and the estimates of ν are significantly

positive for all sectors. However, asymmetric adjustment costs do not help to generate the

value premium. Table A.5 in the Internet Appendix presents the fundamental anomaly

premiums and their alphas under these two versions of asymmetric adjustment costs. The

results are qualitatively close to the baseline results. Specifically, the fundamental value

premium is still insignificant, 0.42% per annum with t-stat of 0.24 under the quadratic

version and −0.18% per annum with t-stat of −0.10 under the exponential version of

asymmetric adjustment costs. Therefore, the absence of asymmetric investment adjustment

costs in the baseline model does not seem to explain its failure to generate the value

premium.

Intangibles — Several recent papers (for example, Eisfeldt, Kim and Papanikolaou,
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2022; Belo et al., 2022) show that intangible capitals become increasingly important for

cross-sectional return and valuation differences. If intangibles are the driving forces for the

value premium, and if our model cannot capture the effects of intangibles, the model will

naturally fail to generate the value premium. There are mainly three types of intangibles

studied in the asset pricing literature: knowledge capital proxied by R&D expenses (Chan,

Lakonishok and Sougiannis, 2001), brand capital proxied by advertising expenses (Chan,

Lakonishok and Sougiannis, 2001; Belo, Lin and Vitorino, 2014), and organizational capital

proxied by organizational capital-to-book assets (Eisfeldt and Papanikolaou, 2013). Table

6 shows that our model is able to capture return spreads sorted on intangibles proxied by

R&D and advertising expenses-to-market ratios. We also construct 10 decile portfolios sorted

on the industry-adjusted organizational capital-to-book assets (Ioca) following (Eisfeldt and

Papanikolaou, 2013) and compute the high-minus-low portfolio returns.28 The fundamental

organizational capital premium is 6.66% (t = 5.12) per annum, compared to 5.28% (t =

3.26) in the data. These results suggest that although our model does not explicitly model

intangible capitals, differences in physical investment rate and profitability between firms

with high and low intangibles are able to capture their return spreads. Therefore, the lack of

intangibles in the model does not seem to explain its failure to generate the value premium.

Explicitly modeling intangible capital may yield different results and is an interesting research

topic in its own right, which we leave for future work.

5.3.3 The accruals anomaly Table 9 shows that Yit+1/Kit+1 is the most important

driver of the return spreads across firms sorted on accruals. According to Table A.3 in the

Internet Appendix, high-accruals firms have higher Yit+1/Kit+1 than low-accruals firms do,

which leads to a positive high-minus-low accruals spread, opposite of the one in the data.

28The details on how to construct Ioca is included in the Appendix A.
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However, differences in Yit+1/Kit+1 between high- and low-accruals firms are likely

overstated. The concept of accruals is absent in our model and cash and accruals basis

accountings are treated the same. The earnings of the high- and low-accruals firms are

assumed to have the same quality. High accruals mean high profitability in the model,

which however is not necessarily true in the data. Data shows that subsequent write-offs of

account receivables happen more often to high-accruals firms (Dechow and Dichev, 2002,

among others). Therefore, the true difference in profitability between high- and

low-accruals firms is likely much smaller, which may lead to a smaller or even negative

fundamental accruals premium.

Prior literature, such as Wu, Zhang and Zhang (2010) and Zhang (2007) among others,

argues that high-accruals firms have lower average returns due to their higher investment rate

on working capital. The intuition is analogous to that of the physical investment premium.

Assuming that investment in working capital incurs adjustment cost, higher investment rate

on working capital leads to higher marginal cost of working capital investment and thus

lower fundamental stock return. Our baseline model assumes zero adjustment costs on

working capital investment for comparison with Gonçalves, Xue and Zhang (2020). We thus

estimate an extended model with quadratic adjustment costs on working capital investment

and details are explained in Section A.4 of the Internet Appendix. Parameter estimates and

the corresponding fundamental anomaly premiums are reported in Table A.6 and Table A.7,

respectively. The results are quantitatively similar to the baseline ones and specifically, the

accruals premium stays positive and significant. These results indicate that the failure to

generate accruals premium is not due to the absence of adjustment costs on working capital

investment.29 Overall, our evidence suggests that explicitly modeling earnings quality is

29Our estimates of the adjustment cost parameter on working capital investment is close to the estimates
in Gonçalves, Xue and Zhang (2020). When using Gonçalves, Xue and Zhang (2020)’s baseline parameters
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a more promising direction to generate the accruals anomaly, which we leave for future

research.

6 Out-of-sample performance

In this section, we discuss whether the in-sample feature of the baseline estimation is critical

for the model’s ability to explain anomalies by recursively estimating model parameters. In

addition, we examine the model’s out-of-sample predictive power on stock returns at the

cross section.

6.1 Recursive estimation of parameters with expanding window

Our baseline estimation utilizes the information of the entire sample and in principle should

generate parameter estimates closest to their true values if the model is correct. However,

one may be concerned that the performance of the model comes from the look-ahead

advantage of the in-sample estimation. In this section, we recursively estimate the model’s

parameters with expanding windows and compute the one-year-ahead fundamental returns.

This procedure, which combines the recursive parameters with realized accounting

variables (instead of their forecasts), is in the same spirit as in Fama and French (1997).

Starting from October 1980, we recursively estimate the model parameters from an

expanding window that starts in June 1967 and ends in May of each year from 1980 to

2016. The latest accounting variables in the first recursive estimation must come no later

than May 1980, the latest month for fiscal year 1979. Following Gonçalves, Xue and Zhang

(2020), we impose a 4-month lag to ensure no look-ahead bias. For example, with the

estimates for the extended model with adjustment costs on working capital investment (reported in Section
E of Internet Appendix), we also find positive implied accruals premiums as well.
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parameters estimated at the end of May 1980, we compute the one-year-ahead fundamental

returns from October 1980 to September 1981. We expand the recursive windows one year

at a time until May 2016. To compare with realized returns that need to be smoothed

within a 12-month window, we evaluate the fit of the recursive estimation for the sample

between March 1981 and December 2016. We allow parameters to vary across industry

within each estimation window.

Table 10 compares the high-minus-low alpha (αH-L), i.e., the alpha of the factor premium,

and the average absolute decile alpha (|αD|) constructed from recursive estimations with

those from the baseline estimation for each anomaly between March 1981 to December 2016.

As we expect, the average absolute decile alpha becomes larger in the out-of-sample (OOS)

estimation than that of the baseline for most anomalies except for the momentum and size

because the in-sample estimate matches stock returns better on average. However, in terms

of matching the anomaly premiums, the OOS estimation does not perform worse than the

baseline estimation. Each specification fails to explain two anomalies, in addition to the value

and accruals anomalies. Neither of them can explain the net stock issues (NSI) premium,

the high-minus-low alpha of which is significant at the 5% level under both specifications.

In addition, the baseline estimation cannot explain the gross profitability (GP/A) premium

while the OOS estimation cannot explain the asset growth (I/A) premium.

In sum, whether parameters are estimated in sample or out of sample is not critical for

the model’s ability to explain factor premiums in general. The fact that our estimation

targets firm-level returns, not the average anomaly premiums, might be a key reason behind

this result.
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6.2 Out-of-sample (OOS) return forecast

Traditional forecasts on cross-sectional stock returns rely on linear models to organize

information. Gu, Kelly and Xiu (2020) show that machine learning methods can

significantly improve the OOS forecasting performance of traditional linear models.30

However, machine learning methods lack economic structures, similar to linear risk-factor

models. One advantage of our estimation is that it combines the Bayesian MCMC method

with a simple yet powerful economic structure. We examine its OOS forecasting

performance in this section.

To forecast stock returns, we need to forecast the firm fundamentals used in Equation

(6) in addition to recursively estimating parameter values as in Section 6.1.31 To reduce

measurement errors, we set the expected rBait+1, τt+1, and δit+1 values to their current values

from the most recent fiscal year-end at least four months ago. In addition, values of physical

and working capital stocks, Kit+1 and Wit+1, are known at the beginning of time t+ 1. The

key is to forecast Yit+1 and Iit+1. Following Gonçalves, Xue and Zhang (2020), we forecast

Iit+1/Kit+1 on lagged Tobin’s Qit, sales-to-total capital, Yit/(Kit +Wit), and investment-to-

physical capital, Iit/Kit, and forecast annual sales growth, Yit+1/Yit, on the year-over-year

quarterly sales growth rates of the prior four quarters. We winsorize the sales growth rates

30The set of machine learning methods studied in Gu, Kelly and Xiu (2020) includes generalized linear
models with penalization, dimension reduction via principal components regression (PCR) and partial least
squares (PLS), regression trees (including boosted trees and random forests), and neural networks.

31We have tried three specifications of recursive estimation: (1) allow both industry and time variations
within each estimation window, and use the parameter estimates at the end of the expanding window to
construct the one-year-ahead fundamental returns; (2) allow both industry and time variations within each
estimation window, and use the average of the time-series parameter estimates to construct the one-year-
ahead fundamental returns; (3) allow industry but not time variations, and use the estimates to construct
the one-year-ahead fundamental returns. The last specification, which is the one used in Section 6.1, gives
us the highest prediction power. Estimates of the third specification better utilize the information of the
entire prior sample in a structural way. The only scenario where the first specification would perform better
is when there is a trend in the time series of parameter estimates, which is not the case here as shown in
Figure A.4 in the Internet Appendix.
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at the 2.5%-97.5% level.

At the beginning of each month t from October 1980 to December 2016, we use the

prior 120-month rolling window to estimate the cross-sectional forecasting regressions of

Iit+1/Kit+1 and Yit+1/Yit. Monthly Fama and MacBeth (1973) cross-sectional weighted least

squares regressions are used for the forecast. The Iit+1 and Yit+1 data are obtained from the

most recent fiscal year ending at least four months prior to month t, and the predictors in the

forecasting regressions are further lagged accordingly. We then construct predicted returns

using forecasted fundamentals and recursively estimated parameters based on Equation (6)

in Section 6.1.

At the beginning of each month t from October 1980 to December 2016, we form deciles

based on the predicted stock returns and NYSE breakpoints and hold them for one month.

Table 11 presents the realized average monthly excess returns, the CAPM alpha, the Fama-

French three-factor, Carhart four-factor, and Fama-French five-factor alphas, and the Hou,

Xue and Zhang (2020) q-factor alpha of the 10 deciles and the high-minus-low decile. First

of all, our model shows strong and reliable forecast capability, with the realized average

monthly excess return of the high-minus-low decile being 0.45% (t=2.45). Second, and more

importantly, this realized return spread between firms with the highest and lowest predicted

returns cannot be explained by the commonly used risk factors. In fact, the risk-adjusted

alphas are even larger and more significant than the average excess return in some cases.

The CAPM alpha, the Fama-French three-factor, Carhart four-factor, and Fama-French five-

factor alphas, and the Hou, Xue and Zhang (2020) q-factor alpha are 0.43% (t=2.38), 0.58%

(t=3.25), 0.52% (t=2.87), 0.61% (t=3.08), and 0.47% (t=2.22), respectively. The fact that

these linear factor models cannot explain the return spread between firms with the highest

and lowest predicted returns suggests that the nonlinear structure imposed by the simple
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q-model plays a critical role in explaining the cross-sectional return differences.

7 Conclusion

Can stock market anomalies be explained within an investment-based asset pricing

framework? To answer this question, prior studies often choose model parameters to fit the

same set of anomaly returns that these studies aim to explain. In this paper, we propose a

portfolio-independent estimation methodology based on Bayesian MCMC, which can be

used to fairly evaluate the performance of any given model in explaining anomalies.

Applying this method on a two-capital q-model, we show that the estimated model

generates large and significant size, momentum, investment, profitability, and intangibles

premiums, but fails to generate the value and accruals premiums. Our results call for

future studies on the economic mechanism behind the value and accruals anomalies.

In addition, the estimated model exhibits reliable out-of-sample forecasts on stock returns

in the cross section, which can not be explained by the commonly used linear factor models.

Combining statistical methods with economic structures is a promising direction for future

research in cross-sectional return predictability.
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Appendix

A Definition of Sorting Variables

BM (Davis, Fama and French, 2000) Book-to-market equity ratio, defined as the book
value of equity for fiscal year end in the previous calendar year t− 1 divided by the market
value of equity at the end of December of the previous calendar year t − 1. We measure
book equity as stockholders’ book equity, plus balance sheet deferred taxes and investment
tax credit (item TXDITC or the sum of item TXDB and item ITCB) if available, minus
the book value of preferred stock. Stockholders’ equity is the value reported by Compustat
(item SEQ) if it is available. If not, we measure stockholders’ equity as the book value of
common equity (item CEQ) plus the par value of preferred stock (item PSTK), or the book
value of assets (item AT) minus total liabilities (item LT). Depending on availability, we
use redemption (item PSTKRV), liquidating (item PSTKL), or par value (item PSTK) for
the book value of preferred stock.

R11 (Fama and French, 1996; Carhart, 1997) Prior 11-month returns from month t-12 to
t-2.

I/A (Cooper, Gulen and Schill, 2008) We measure I/A as change in total assets
(Compustat annual item AT) scaled by lagged total assets. At the end of June of each year
t, we use NYSE breakpoints to split stocks into deciles based on I/A for the fiscal year
ending in calendar year t-1 and calculate monthly value-weighted decile returns from July
of year t to June of t+1.

ROE (Hou, Xue and Zhang, 2020) ROE is income before extraordinary items (Compustat
quarterly item IBQ) divided by 1-quarter-lagged book equity. From 1972 onward, quarterly
book equity is shareholders’ equity, plus balance sheet deferred taxes and investment tax
credit (item TXDITCQ) if available, minus the book value of preferred stock (item PSTKQ).
Depending on availability, we use stockholders’ equity (item SEQQ), or common equity (item
CEQQ) plus the book value of preferred stock (item PSTKQ), or total assets (item ATQ)
minus total liabilities (item LTQ) in that order as shareholders’ equity. Prior to 1972, we
expand the sample coverage by using book equity from Compustat annual files and imputing
quarterly book equity with clean surplus accounting.

At the beginning of each month t, we sort stocks into deciles on their most recent ROE.
Before 1972, we use the most recent ROE computed with quarterly earnings from the fiscal
quarter ending at least four months ago. From 1972 onward, we use ROE computed with
quarterly earnings from the most recent quarterly earnings announcement date (item
RDQ). For a firm to enter the portfolio formation, we require the end of the fiscal quarter
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corresponding to its most recent ROE to be within six months prior to the portfolio
formation and its earnings announcement date to be after the corresponding fiscal quarter
end. Monthly decile returns are calculated for the current month t, and the deciles are
rebalanced at the beginning of month t+1.

Size (Fama and French, 1992) Size is price times shares outstanding from CRSP. At the
end of June of each year t, we use NYSE breakpoints to sort stocks into deciles based on
the June-end Size, and calculate monthly value-weighted decile returns from July of year t
to June of t+1.

Accruals (Sloan, 1996) We measure Accruals as ∆ACT−∆CHE−∆LCT+∆DLC+∆TXP−∆DP
(AT+AT−1)/2

,
where ∆ACT is the annual change in total current assets, ∆CHE is the annual change in
total cash and short-term investments, ∆LCT is the annual change in current liabilities,
∆DLC is the annual change in debt in current liabilities, ∆TXP is the annual change in
income taxes payable, ∆DP is the annual change in depreciation and amortization, and
(AT + AT−1)/2 is average total assets over the last two years. At the end of June of each
year t, we use NYSE breakpoints to sort all stocks into deciles based on Accruals for the
fiscal year ending in calendar year t-1, and calculate monthly value-weighted decile returns
from July of year t to June of t+1.

NSI (Fama and French, 2008a) We measure net stock issues (NSI) as the natural log of the
ratio of the split-adjusted shares outstanding scaled by lagged split-adjusted shares
outstanding. The split-adjusted shares outstanding is shares outstanding (Compustat
annual item CSHO) times the adjustment factor (item AJEX). At the end of June of each
year t, we use NYSE breakpoints to sort all stocks into deciles based on NSI for the fiscal
year ending in calendar year t-1, and calculate monthly value-weighted decile returns from
July of year t to June of t+1.

∆PI/A (Lyandres, Sun and Zhang, 2008) We measure ∆PI/A as changes in gross
property, plant, and equipment (Compustat annual item PPEGT) plus changes in
inventory (item INVT) scaled by lagged total assets (item AT). At the end of June of each
year t, we use NYSE breakpoints to sort stocks into deciles based on ∆PI/A for the fiscal
year ending in calendar year t-1, and calculate monthly value-weighted decile returns from
July of year t to June of t+1.

GP/A (Novy-Marx, 2013) We measure GP/A as total revenue (Compustat annual item
REVT) minus cost of goods sold (item COGS) divided by current total assets (item AT).
At the end of June of each year t, we use NYSE breakpoints to sort stocks into deciles
based on GP/A for the fiscal year ending in calendar year t-1, and calculate monthly
value-weighted decile returns from July of year t to June of t+1.
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ROA (Balakrishnan, Bartov and Faurel, 2010; Hou, Xue and Zhang, 2020) We measure
ROA as income before extraordinary items (Compustat quarterly item IBQ) divided by
1-quarter-lagged total assets (item ATQ). At the beginning of each month t, we use NYSE
breakpoints to sort all stocks into deciles based on ROA computed with the most recently
announced quarterly earnings. Monthly value-weighted decile returns are calculated for
month t, and the deciles are rebalanced at the beginning of t+1. For a firm to enter the
portfolio formation, we require the end of the fiscal quarter that corresponds to the most
recently announced earnings to be within six months prior to the portfolio formation to
exclude stale earnings information.

RD/M (Chan, Lakonishok and Sougiannis, 2001; Hou, Xue and Zhang, 2020) We measure
RD/M as R&D expenses (Compustat annual item XRD) divided by market equity. At the
end of June of each year t, we use NYSE breakpoints to split stocks into deciles based on
RD/M, which is R&D expenses for the fiscal year ending in calendar year t-1 divided by
the market equity at the end of December of t-1, and calculate monthly value-weighted
decile returns from July of year t to June of t+1. We keep only firms with positive R&D
expenses. Because the accounting treatment of R&D expenses was standardized in 1975,
the RD/M decile returns start in July 1976.

Ad/M (Chan, Lakonishok and Sougiannis, 2001; Hou, Xue and Zhang, 2020) We measure
Ad/M as advertising expenses (Compustat annual item XAD) divided by market equity.
At the end of June of each year t, we use NYSE breakpoints to split stocks into deciles
based on Ad/M, which is advertising expenses for the fiscal year ending in calendar year
t-1 divided by the market equity at the end of December of t-1, and calculate monthly
value-weighted decile returns from July of year t to June of t+1. We keep only firms with
positive advertising expenses. Because sufficient XAD data start in 1972, the Ad/M decile
returns start in July 1973.

OCA and IOCA (Eisfeldt and Papanikolaou, 2013; Hou, Xue and Zhang, 2020) We
measure OCA and IOCA as organizational capital-to-assets ratio and industry-adjusted
organizational capital-to-assets ratio. We construct the stock of organization capital using
the perpetual inventory method:

OCit = (1− δ)OCit−1 + SG&Ait/CPIt, (A.1)

where OCit is the organization capital of firm i at the end of year t, SG&Ait is selling, general,
and administrative (SG&A) expenses (Compustat annual item XSGA), CPIt denotes the
consumer price index, and δ is the annual depreciation rate of OC. The initial stock of OC
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is defined as:

OCi0 = SG&Ai0/(g + δ), (A.2)

where SG&Ai0 is the first valid SG&A observation (zero or positive) for firm i. g is the
long-term growth rate of SG&A and is assumed to be 10% for SG&A. δ is the depreciation
rate for OC and is assumed to be 15%. Missing SG&A values after the starting date are
treated as zero. OCA is defined as OC scaled by total assets. To calculate IOCA, we demean
a firm’s OCA by its industry mean and then divide the demeaned OCA by the standard
deviation of OCA within its industry. We use the Fama and French (1997) 17-industry
classification. We winsorize OCA at the 1% and 99% levels of all firms each year before the
industry standardization to alleviate the impact of outliers. At the end of June of each year
t, we use NYSE breakpoints to sort stocks into deciles based on OCA and IOCA for the
fiscal year ending in calendar year t-1, and calculate monthly value-weighted decile returns
from July of year t to June of t+1. We require SG&A to be nonmissing in calendar year
t-1 because this SG&A receives the highest weight in OC. We also exclude firms with zero
OC.
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Table 3: Parameter estimates

Column γ reports the the posterior means of the marginal product parameter γ; column CIγ reports the 95%

credible intervals of γ; and column σ(γ) in Panels C and D report the time-series standard deviation of the

posterior means of γ when the parameters are time-varying. Similar definitions apply to columns a, CIa, and

σ(a) for the adjustment costs parameter a. Column qK reports the value-weighted average of model-implied

marginal q for physical capital, defined as qKit ≡ 1 + ajt(1 − τt)Iit/Kit for firm i in industry j at time t.

For specifications with time-varying parameters, we report the time-series averages of these statistics due to

space constraint.

Industry γ CIγ σ(γ) a CIa σ(a) qK

Panel A: Constant parameters θ

All industries 0.15 [0.15, 0.15] 0.14 [0.13, 0.14] 1.02

Panel B: Industry-specific parameters θj

Consumer Nondurables 0.13 [0.13, 0.13] 0.07 [0.05, 0.09] 1.01

Consumer Durables 0.16 [0.15, 0.16] 0.29 [0.25, 0.34] 1.06
Manufacturing 0.16 [0.16, 0.16] 0.13 [0.11, 0.14] 1.02
Energy 0.20 [0.20, 0.21] 0.10 [0.09, 0.12] 1.01
Business Equipment 0.23 [0.23, 0.24] 0.78 [0.75, 0.81] 1.23

Telecom 0.24 [0.24, 0.25] 0.07 [0.06, 0.08] 1.01

Wholesale & Retail 0.09 [0.08, 0.09] 0.18 [0.16, 0.20] 1.03

Healthcare 0.17 [0.17, 0.18] 0.12 [0.10, 0.15] 1.02

Utilities 0.29 [0.29, 0.30] 0.01 [0.00, 0.02] 1.00

Others 0.15 [0.15, 0.15] 0.15 [0.14, 0.16] 1.03

Panel C: Time-series average of time-varying parameters θt

All industries 0.15 [0.14, 0.15] 0.09 0.29 [0.26, 0.32] 0.30 1.02

Panel D: Time-series average of industry-specific and time-varying parameters θjt

Consumer Nondurables 0.13 [0.11, 0.14] 0.09 0.42 [0.29, 0.55] 0.43 1.05

Consumer Durables 0.17 [0.14, 0.19] 0.18 1.15 [0.83, 1.47] 1.13 1.21
Manufacturing 0.16 [0.15, 0.17] 0.11 0.57 [0.51, 0.65] 0.98 1.08
Energy 0.20 [0.18, 0.22] 0.13 0.45 [0.40, 0.48] 0.54 1.06
Business Equipment 0.23 [0.21, 0.24] 0.19 1.78 [1.66, 1.83] 2.00 1.53

Telecom 0.28 [0.25, 0.30] 0.21 0.71 [0.65, 0.76] 0.66 1.09

Wholesale & Retail 0.08 [0.07, 0.09] 0.06 0.87 [0.77, 0.96] 0.98 1.13

Healthcare 0.19 [0.17, 0.21] 0.16 0.59 [0.44, 0.73] 0.68 1.09

Utilities 0.29 [0.25, 0.32] 0.17 0.25 [0.20, 0.32] 0.32 1.02

Others 0.17 [0.15, 0.18] 0.13 0.48 [0.47, 0.54] 0.52 1.09
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Table 4: Economic meanings of industry and time variations in parameter
estimates

This table investigates the link between operating profits-to-sales ratio (Tobin’s q) and γjt (ajt). Columns

(1) and (2) report the the following two industry-level ordinary least squares (OLS) regressions, respectively:

Π/Y jt = cγ + bγ γjt + εγjt ,

qjt = ca + ba ajt + εajt ,

where Π/Y jt ≡
∑Njt

i=1$it−1Πit/Yit, and qjt ≡
∑Njt

i=1$it−1qit.In column (1), the dependent variable is

the value-weighted operating profits-to-sales ratio for industry j at time t, the independent variable is the

estimated value of γ for the same industry and time, and cγ and bγ are regression coefficients. Operating

profits is measured by operating income before depreciation (item OIBDP). In column (2), the dependent

variable is the value-weighted Tobin’s q for industry j at time t, the independent variable is the estimated

value of a for the same industry and time, and ca and ba are regression coefficients. Tobin’s q is measured

by the market value divided by the book value of the firm. The market value of the firm is calculated as the

book value of the firm minus the book value of equity plus the market value of equity. The weight $it−1 is

proportional to the market equity Vit−1 as defined in equation (9). The t-values based on robust standard

errors are reported in parentheses. The sample period is from fiscal year 1965 to 2017.

Π
Y q

γjt 0.13
(6.10)

ajt 0.19
(3.60)

Constant 0.18 2.16
(34.83) (34.49)

Adj.R2 0.078 0.023

Observations 530 530
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Table 5: Summary statistics of the realized and fundamental firm-level stock
returns

This table reports the following key statistics for the realized (rS) and fundamental (rF ) firm-level stock

returns: mean, standard deviation, skewness, kurtosis, mean absolute error (m.a.e.) of the fundamental

returns, and the time series average of cross-sectional correlations between the realized and fundamental

returns. The m.a.e. is defined as m.a.e. ≡ 1

T

∑T−1
t=0

1

Nt+1

∑Nt+1

i=1 |rSit − rFit |, where Nt+1 is the number of

firms in period t + 1. For fundamental returns, both the posterior means and the 95% credible intervals

(in square brackets) of these statistics are reported. Both realized and fundamental returns are winsorized

at 0.5 and 99.5 percentiles. The fundamental stock returns are computed based on four model setups: the

setup (θ) in which the estimated parameters are constant over time and across industries; the setup (θj)

in which the estimated parameters are industry-specific but constant over time; the setup (θt) in which the

estimated parameters are time-varying but constant across industries, and the setup (under column θjt) in

which the estimated parameters are industry-specific and time-varying. The sample period is from June

1967 to December 2016.

Data θ θj θt θjt

Mean 14.45 15.47 15.47 14.97 15.65

[15.60, 15.83] [15.36, 15.57] [14.87, 15.06] [15.55, 15.75]

StdDev 60.78 19.76 18.49 27.36 34.17

[19.67, 19.85] [18.39, 18.59] [27.26, 27.46] [34.06, 34.27]

Skewness 2.15 2.12 1.68 1.66 1.68

[2.11, 2.14] [1.66, 1.70] [1.64, 1.67] [1.67, 1.70]

Kurtosis 11.05 13.33 10.66 10.74 11.20

[13.26, 13.41] [10.59, 10.73] [10.66, 10.82] [11.11, 11.29]

Correlation na 0.09 0.12 0.12 0.20

[0.09, 0.10] [0.12, 0.12] [0.12, 0.12] [0.20, 0.20]

m.a.e na 42.45 41.85 40.85 40.10

[42.42, 42.48] [41.82, 41.89] [40.82, 40.88] [40.06, 40.13]
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Table 6: Posterior summary of anomaly premiums under the baseline estimation

For each anomaly premium, this table reports the average annualized returns of the 12 anomaly premiums,

rS , and their corresponding t-values in the data, the posterior means of the fundamental premiums, rF , the

t-values of rF , and the t-values of alphas, defined as α ≡ rS−rF , in the baseline estimation. The t-values are

adjusted for heteroscedasticity and autocorrelations with lags up to 24 months. We report the 95% credible

intervals for rF , t(rF ), and t(α) in square brackets. The posterior distributions are based on 5,000 Bayesian

MCMC draws. Returns are in percentage per annum. The sample period is from June 1967 to December

2016 for all anomaly variables except for ROA, RD/M, and Ad/M, for which The sample starts at December

1972, December 1976, and December 1973, respectively, due to data availability.

Anomaly rS t(rS) rF t(rF ) t(α)

BM 6.74 2.57 0.46 0.26 3.33
[0.31, 0.60] [0.18, 0.35] [3.24, 3.42]

R11 13.75 4.15 11.82 12.51 0.78
[11.74, 11.90] [12.38, 12.65] [0.75, 0.81]

I/A -6.30 -3.23 -3.08 -2.25 -2.10
[-3.17, -2.99] [-2.32, -2.18] [-2.16, -2.04]

ROE 7.69 3.06 4.62 5.72 1.81
[4.53, 4.70] [5.58, 5.85] [1.76, 1.86]

Size -4.84 -1.37 -5.99 -5.63 0.34
[-6.07, -5.90] [-5.73, -5.54] [0.31, 0.37]

Accruals -5.58 -3.14 4.74 4.45 -6.28
[4.65, 4.84] [4.34, 4.56] [-6.37, -6.19]

NSI -7.65 -4.26 -3.05 -3.36 -2.93
[-3.14, -2.96] [-3.48, -3.25] [-2.99, -2.86]

∆PI/A -5.79 -2.85 -5.79 -4.81 -0.00
[-5.88, -5.69] [-4.93, -4.71] [-0.07, 0.07]

GP/A 3.87 2.00 7.26 5.84 -2.63
[7.08, 7.44] [5.63, 6.07] [-2.78, -2.48]

ROA 6.46 2.52 3.80 3.99 1.48
[3.70, 3.89] [3.86, 4.11] [1.43, 1.53]

RD/M 8.70 2.26 5.24 2.12 1.42
[5.04, 5.43] [2.04, 2.21] [1.33, 1.50]

Ad/M 6.10 1.87 7.46 2.82 -0.58
[7.28, 7.65] [2.74, 2.90] [-0.66, -0.50]
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Table 8: Market states and factor premium

For each month, we categorize the market state as Up if the value-weighted market returns from month

t-36 to t-1 are nonnegative and as Down if negative. We report the high-minus-low decile returns averaged

across Up and Down states, respectively. rS denotes the stock returns, and rF the fundamental returns.

The t-values are in parentheses and adjusted for heteroscedasticity and autocorrelations with lags up to 24

months. The sample period is from June 1967 to December 2016 for all anomaly variables except for ROA,

RD/M, and Ad/M. The sample starts at December 1972, December 1976, and December 1973 for ROA,

RD/M, and Ad/M, respectively, due to data availability.

BM R11 I/A ROE

Market State rS rF rS rF rS rF rS rF

Down 14.24 7.68 -12.99 8.77 -12.97 -3.50 -6.67 1.01
(5.19) (1.83) (-1.03) (3.05) (-6.07) (-1.66) (-1.31) (0.39)

Up 5.40 -0.82 18.51 12.43 -5.11 -3.08 10.25 5.29
(1.81) (-0.52) (8.30) (11.74) (-2.58) (-2.08) (4.35) (5.09)

Size Accruals NSI ∆PI/A

Market State rS rF rS rF rS rF rS rF

Down -22.71 -8.31 -7.55 3.15 -4.99 -1.70 -14.60 -9.13
(-3.40) (-3.56) (-2.71) (1.18) (-1.09) (-1.18) (-3.76) (-3.27)

Up -1.66 -5.57 -5.23 5.04 -8.13 -3.34 -4.22 -5.24
(-0.47) (-5.09) (-2.65) (4.87) (-4.57) (-3.49) (-2.11) (-4.38)

GP/A ROA RD/M Ad/M

Market State rS rF rS rF rS rF rS rF

Down -4.66 3.02 -7.19 -2.21 9.35 -1.54 17.17 8.28
(-2.06) (0.96) (-1.04) (-0.55) (1.87) (-0.63) (4.05) (1.88)

Up 5.39 8.02 8.89 4.90 8.61 6.12 4.07 7.34
(2.85) (6.34) (3.85) (4.12) (1.99) (2.28) (1.15) (2.48)

67



T
ab

le
9:

C
o
m

p
a
ra

ti
v
e

st
a
ti

cs
o
f

fu
n
d
a
m

e
n
ta

l
a
n
o
m

a
ly

p
re

m
iu

m
s

u
n
d
e
r

th
e

b
a
se

li
n

e
e
st

im
a
ti

o
n

T
h

is
ta

b
le

re
p

or
ts

th
e

al
p

h
a

of
th

e
fu

n
d

a
m

en
ta

l
fa

ct
o
r

p
re

m
iu

m
,

d
efi

n
ed

a
s
α
≡
rS
−
rF

,
fr

o
m

th
e

b
a
se

li
n

e
es

ti
m

at
io

n
a
n

d
si

x
co

m
p

a
ra

ti
ve

st
at

ic
s

fo
r

th
e

12
an

om
al

ie
s.

In
th

e
co

m
p

a
ra

ti
ve

st
a
ti

c
a
n
a
ly

si
s

d
en

o
te

d
I i
t
/
K
it

,
I i
t
/
K
it

is
se

t
to

b
e

it
s

cr
o
ss

-s
ec

ti
o
n

a
l

m
ed

ia
n

a
t

p
er

io
d
t

ac
ro

ss
al

l
th

e
fi

rm
s.

T
h

e
p

ar
am

et
er

s
fr

o
m

th
e

b
a
se

li
n

e
es

ti
m

a
ti

o
n

a
re

u
se

d
to

co
n

st
ru

ct
th

e
fu

n
d

a
m

en
ta

l
re

tu
rn

s,
w

it
h

a
ll

th
e

o
th

er
fi

rm

ch
ar

ac
te

ri
st

ic
s

re
m

ai
n

u
n

ch
an

ge
d

.
T

h
e

o
th

er
th

re
e

co
m

p
a
ra

ti
ve

st
a
ti

c
a
n

a
ly

se
s,
I i
t+

1
/
K
it

+
1
,
Y
it

+
1
/
K
it

+
1
,

a
n

d
W
it

+
1
/
K
it

+
1
,

a
re

d
es

ig
n

ed

si
m

il
ar

ly
.

In
th

e
co

m
p

ar
at

iv
e

st
at

ic
an

a
ly

si
s

d
en

o
te

d
θ
j
,

ti
m

e
va

ri
a
ti

o
n

in
p

a
ra

m
et

er
va

lu
es

is
sh

u
t

d
ow

n
,

w
h

il
e

in
th

e
co

m
p

a
ra

ti
ve

st
at

ic
an

al
y
si

s
d

en
ot

ed
θ
t
,

in
d

u
st

ry
va

ri
a
ti

o
n

in
p
a
ra

m
et

er
va

lu
es

is
sh

u
t

d
ow

n
.

T
h

e
t-

va
lu

es
re

p
o
rt

ed
in

p
a
re

n
th

es
es

a
re

a
d

ju
st

ed
fo

r

h
et

er
os

ce
d

as
ti

ci
ty

an
d

au
to

co
rr

el
at

io
n

s
o
f

u
p

to
2
4

la
g
s.

B
M

R
11

I/
A

R
O

E
S

iz
e

A
cc

ru
a
ls

N
S

I
∆
P
I
/A

G
P

/
A

R
O

A
R

D
/
M

A
d

/
M

B
as

el
in

e
6.

27
1.

87
−

3.
1
6

3.
0
5

1.
1
4

−
1
0
.3

3
−

4.
5
6

0.
0
4

−
3.

3
9

2.
6
3

3.
4
7

−
1.

3
9

(3
.3

3)
(0
.5

7)
(−

2.
0
6
)

(1
.3

3
)

(0
.3

4
)

(−
6.

2
9
)

(−
2.

9
0
)

(0
.0

3
)

(−
2.

6
4
)

(1
.1

1
)

(1
.4

2
)

(−
0.

5
9
)

I i
t
/K

it
13
.3

6
−

0.
63

−
9.

8
8

2.
3
5

1.
4
2

−
9.

5
4

−
6.

9
1

−
5.

7
3

−
7.

0
7

1.
7
9

3.
9
0

3.
4
6

(5
.9

0)
(−

0.
19

)
(−

5
.4

7
)

(0
.9

6
)

(0
.4

0
)

(−
5.

2
9
)

(−
3.

6
4
)

(−
3.

9
2
)

(−
4.

6
9
)

(0
.7

3
)

(1
.1

7
)

(1
.3

8
)

I i
t+

1
/K

it
+

1
−

0.
12

8.
29

0.
9
2

5.
3
6

0.
5
1

−
1
1
.6

7
−

3.
2
6

3.
7
5

0.
4
0

4.
3
6

5.
1
3

−
5.

4
2

(−
0.

06
)

(2
.2

4)
(0
.5

5
)

(1
.9

3
)

(0
.1

5
)

(−
7.

0
1
)

(−
2.

1
5
)

(2
.3

1
)

(0
.2

9
)

(1
.5

9
)

(2
.0

7
)

(−
2.

1
6
)

Y
it

+
1
/K

it
+

1
−

62
.2

6
14
.8

8
5.

5
3

2
5.

5
2
−

1
4
.7

1
1
1
.1

7
−

3
6
.3

2
−

8.
3
3

1
0
9.

0
5

3
1.

1
9

2
7.

8
0

6.
9
1

(−
7.

47
)

(3
.6

9)
(1
.7

2
)

(7
.6

2
)

(−
4.

2
3
)

(4
.0

8
)

(−
5.

1
4
)

(−
2.

3
6
)

(1
1.

2
5
)

(6
.6

7
)

(8
.1

7
)

(2
.5

4
)

W
it

+
1
/K

it
+

1
12
.2

5
1.

19
−

1.
7
9

2.
5
2

1
5.

8
3

−
1
9
.6

0
−

4.
0
4

9.
4
1

−
7.

5
8

3.
0
3

−
2
.8

1
−

0
.4

4
(6
.0

3)
(0
.3

2)
(−

0.
4
8
)

(1
.0

6
)

(3
.9

5
)

(−
7.

9
0
)

(−
2.

0
0
)

(2
.4

8
)

(−
3.

6
8
)

(1
.3

5
)

(−
0
.8

3
)

(−
0
.1

3
)

θ
j

7.
38

10
.1

6
−

6.
2
4

3.
8
0

0.
9
8

−
1
0
.4

8
−

4.
8
5

−
1.

5
8

−
2.

9
0

3.
4
0

6.
1
8

−
0.

2
9

(3
.2

5)
(4
.0

6)
(−

3.
4
2
)

(2
.1

0
)

(0
.2

8
)

(−
5.

9
6
)

(−
2.

4
4
)

(−
0.

8
7
)

(−
1.

4
7
)

(1
.7

7
)

(1
.4

9
)

(−
0.

1
0
)

θ
t

10
.5

2
8.

00
−

5
.6

2
2.

3
6

2.
7
3

−
1
4
.3

8
−

3.
0
7

−
2.

6
7

−
1
1
.6

1
2.

3
5

8.
2
2

−
7.

7
9

(4
.2

0)
(2
.9

3)
(−

3
.1

8
)

(1
.2

9
)

(0
.7

3
)

(−
7.

6
8
)

(−
1.

4
9
)

(−
1.

4
8
)

(−
5.

4
1
)

(1
.2

4
)

(2
.0

7
)

(−
2.

4
2
)

68



Table 10: Out-of-sample (OOS) prediction with expanding-window estimates

Out-of-sample predicted returns are constructed using parameter estimates from the expanding window

starting in June 1967. Within the expanding window, parameter estimates vary across industries but stay

constant over time. The prediction period is from March 1981 to December 2016. αH-L is the high-minus-

low alpha and |αD| is the average absolute alpha across the 10 decile portfolios of each anomaly. The t-

values are in parentheses and adjusted for heteroscedasticity and autocorrelations with lags up to 24 months.

Significance at the 1%, 5%, and 10% levels are denoted with three stars, two stars, and one star, respectively.

Returns are in percentage per annum.

αH-L |αD|

Baseline OOS Baseline OOS

BM 7.27*** 9.63*** 1.70 1.90
(2.86) (3.25)

R11 -2.81 6.63 1.84 1.67
(-0.71) (1.69)

I/A -1.11 -5.27** 1.14 1.16
(-0.57) (-2.21)

ROE -0.14 0.21 1.28 1.54
(-0.05) (0.06)

Size 2.16 0.88 1.90 1.72
(0.56) (0.23)

Accruals -8.14*** -7.72*** 1.88 2.00
(-5.11) (-4.08)

NSI -3.87** -5.31** 0.89 1.13
(-2.00) (-2.00)

∆PI/A 1.28 -0.73 1.25 1.62
(0.85) (-0.38)

GP/A -3.78*** -2.49 1.20 1.26
(-2.91) (-1.12)

ROA -0.74 0.38 1.33 1.70
(-0.25) (0.12)

RD/M 3.38 8.06 1.72 2.42
(1.45) (1.76)

Ad/M -1.09 1.33 1.01 1.56
(-0.33) (0.37)
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Figure 1: Distribution of firm-level returns: realized vs. fundamental

This table presents the histograms of the realized (in blue) and fundamental (in orange) firm-level stock

returns from June 1967 to December 2016 under the specifications with constant, industry-specific, time-

varying, and industry-specific and time-varying parameter values in Panel (a) - (d), respectively. Returns

are in percentage per annum. The number of observations is 136,598. Observations are trimmed at 0.5 and

99.5 percentiles for illustration purposes.
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Figure 2: Performance comparison

This figure plots the posterior distributions of the differences in m.a.e. among the four specifications. The

differences in m.a.e. between the benchmark specification, defined as the one with the lowest m.a.e. (i.e.,

specification with industry-specific and time-varying parameters), and an alternative specification is given

by da =
1

T

∑T
t=1

1

Nt

∑Nt

i=1

(∣∣∣rSit+1 − r
F (a)
it+1

∣∣∣− ∣∣∣rSit+1 − r
F (b)
it+1

∣∣∣), where rF (b) and rF (a) are the fundamental

returns under the benchmark specification b and under an alternative specification a, respectively, and da is

in percentage per annum. The three alternative specifications are the ones with constant, industry-specific,

and time-varying parameter values, respectively.
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Figure 3: Posterior distributions of the fundamental factor premiums

This figure plots the posterior probability density functions of the fundamental factor premiums formed on

book-to-market (BM), momentum (R11), asset growth (I/A), return-on-equity (ROE), size (Size), accruals

(Accruals), net share issues (NSI), investment-to-assets ratio (∆PI/A), gross profitability (GP/A), return-

on-assets (ROA), R&D-to-market ratio (RD/M), and advertising-to-market ratio (Ad/M). The red lines

represent normal distributions with means and standard deviations being the posterior means and standard

deviations of the corresponding factor premiums. The 2.5%, 50%, and 97.5% percentiles of each posterior

distribution are labeled below the horizontal axes.
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Figure 4: Time series of factor premiums: realized vs. fundamental

This figure plots the time series of the realized (in blue solid lines) and fundamental (in red dotted lines)

factor premiums. Returns are in percentage per annum and in monthly frequency.
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Figure 4: Time series of factor premiums: realized vs. fundamental (continued)
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Figure 5: Persistence of factor premiums: realized vs. fundamental

This figure plots the realized (top of each panel) and fundamental returns (top of each panel) on the low

(blue solid lines) and high (red dotted lines) deciles for 36 months after the portfolio formation for each

anomaly. Returns are in percentage per annum and in monthly frequency.
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Abstract

This Internet Appendix furnishes supplementary materials for our manuscript “Funda-

mental Anomalies”.
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A Derivations in the two-capital Model

We show that firm’s profit is constant-returns-to-scale in physical and working capital when the

adjustment intermediate input is optimally chosen in Section A.1, and that stock return equals

levered investment return in Section A.2. We also derive the fundamental stock return in the

extended models with asymmetric adjustment costs in Section A.3 and with adjustment costs in

the working capital investment in Section A.4.

A.1

Let the production function be Yit ≡ Y (Kit,Wit, Sit, Xit) = XitK
γKjt
it W

γWjt
it S

1−γKjt−γWjt
it for firm i in

industry j at time t, in which Sit represents any costly adjustable intermediate inputs and its

price pSt is taken as given. Yit is of constant returns to scale in physical capital, working capital,

and intermediate inputs with their shares given by γKjt , γ
W
jt , and 1 − γKjt − γWjt , respectively. The

operating profits function solves the static optimization problem:

Π(Kit,Wit, Xit) = max
{Sit}

XitK
γKjt
it W

γWjt
it S

1−γKjt−γWjt
it − pSt Sit.

The first-order condition with respect to Sit is (1− γKjt − γWjt )Yit/Sit = pSt . Solving for Sit yields

Sit =

(1− γKjt − γWjt )XitK
γKjt
it W

γWjt
it

pSt

 1

γK
jt

+γW
jt

.

Plugging the first-order condition back into Π(Kit,Wit, Xit) yields Πit = (γKjt + γWjt )Yit. Plugging

the optimal Sit into Yit to rewrite Πit only in terms of Kit and Wit yields

Π(Kit,Wit, Xit) = (γKjt + γWjt )X

1

γK
jt

+γW
jt

it

(
1− γKjt − γWjt

pSt

) 1−γKjt−γ
W
jt

γK
jt

+γW
jt

K

γKjt

γK
jt

+γW
jt

it W

γKjt

γK
jt

+γW
jt

it .

2



As such, Π(Kit,Wit, Xit) is of constant returns to scale in Kit and Wit, and their shares, given

by γKjt /(γ
K
jt + γWjt ) and γWjt /(γ

K
jt + γWjt ), respectively, sum to one. In particular, ∂Πit/∂Kit =

[γKjt /(γ
K
jt + γWjt )](Πit/Kit) = γKjtYit/Kit. Similarly, ∂Πit/∂Wit = γWjt Yit/Wit.

A.2

The optimization problem of firm i can be written as:

Vit(Xit, Kit,Wit, Bit) = max
Iit,∆Wit,Kit+1,Wit+1,Bit+1

{Dit + Et[Mt+1Vit(Xit+1, Kit+1,Wit+1, Bit+1)]}

s.t. Kit+1 = Iit + (1− δit)Kit

Wit+1 = ∆Wit +Wit (A.1)

where Dit = (1−τt)(Πit−Φit)−Iit−∆Wit+Bit+1−rBitBit+τtδitKit+τt(r
B
it −1)Bit. Let qKit and qWit

be the Lagrangian multipliers associated with Kit+1 = Iit + (1− δit)Kit and Wit+1 = Wit + ∆Wit,

respectively. The Lagrangian function can be written as:

Lit = Dit + Et[Mt+1Vit]− qKit (Kit+1 − (1− δit)Kit − Iit)− qWit (Wit+1 −Wit −∆Wit) . (A.2)

Taking the first-order derivatives of Lit with respect to Iit, ∆Wit, Kit, Wit+1, and Bit+1 to zero

and applying the envelop theorem give the following:

qKit = 1 + (1− τt)
∂Φit

∂Iit
(A.3)

qWit = 1 (A.4)

qKit = Et

[
Mt+1

[
(1− τt+1)

(
∂Πit+1

∂Kit+1

− ∂Φit+1

∂Kit+1

)
+ τt+1δit+1 + (1− δit+1)qKit+1

]]
(A.5)

qWit = Et

[
Mt+1

[
(1− τt+1)

∂Πit+1

∂Wit+1

+ qWit+1

]]
(A.6)

1 = Et[Mt+1(rBit+1 − (rBit+1 − 1)τt+1)] = Et[Mt+1r
Ba
it+1] (A.7)

3



Combining equations (A.3) and (A.5) leads to

Et[Mt+1r
K
it+1] = 1

where

rKit+1 =
(1− τt+1)

(
∂Πit+1

∂Kit+1
− ∂Φit+1

∂Kit+1

)
+ τt+1δit+1 + (1− δit+1)qKit+1

qKit
.

Similarly, combining equations (A.4) and (A.6) leads to

Et[Mt+1r
W
it+1] = 1

where

rWit+1 = 1 + (1− τt+1)
∂Πit+1

∂Wit+1

.

To prove equation (4), i.e.,

wKit r
K
it+1 + (1− wKit )rWit+1 = wBit r

Ba
it+1 + (1− wBit )rSit+1 ,

we proceed in three steps:

1. Show that firm asset value V a
it can be written as

V a
it = Pit +Bit+1 = Et

[
∞∑
s=1

Mt+sD
a
it+s

]

where

Da
it+1 ≡ (1− τt+1)(Πit+1 − Φit+1) + τt+1δt+1Kit+1 − Iit+1 −∆Wit+1 .

Proof:

V a
t = Pt +Bt+1 = Et [Mt+1 (Dt+1 + Pt+1)] +Bt+1

4



= Et
[
Mt+1

[
(1− τt+1)(Πt+1 − Φt+1) + τt+1δt+1Kt+1 − It+1 −∆Wit+1 +Bt+2 − rBt+1Bt+1

+τt+1(rBt+1 − 1)Bt+1 + Pt+1

]]
+Bt+1 (A.8)

The optimality w.r.t. Bt+1, equation (A.7), implies

Bt+1 = Et
[
Mt+1

[
rBt+1Bt+1 − τt+1(rBt+1 − 1)Bt+1

]]
.

Substitute the above equation into equation (A.8) and get

V a
t = Et [Mt+1 [(1− τt+1)(Πt+1 − Φt+1) + τt+1δt+1Kt+1 − It+1 −∆Wit + Pt+1 +Bt+2}]

= Et
[
Mt+1

[
Da
t+1 + Pt+1 +Bt+2

]]
= Et

[
∞∑
s=1

Mt+sD
a
t+s

]
.

Q.E.D.

2. Show that qKitKit+1 +Wit+1 = Pt +Bt+1.

Proof: Using equations (A.5) and (A.6), we have

qKitKit+1 +Wit+1 = qKitKit+1 + qWit Wit+1

= Et

[
Mt+1

[
(1− τt+1)

(
Kit+1

∂Πit+1

∂Kit+1

−Kit+1
∂Φit+1

∂Kit+1

)
+ τt+1δit+1Kit+1

+(1− δit+1)qKit+1Kit+1 + (1− τt+1)Wit+1
∂Πit+1

∂Wit+1

+ qWit+1Wit+1

]]
= Et

[
Mt+1

[
(1− τt+1) (Πit+1 − Φit+1) + τt+1δit+1Kit+1 + qKit+1Kit+2

−It+1 +Wit+1]]

= Et
[
Mt+1

[
Da
it+1 + qKit+1Kit+2 +Wt+2

]]
= Et

[
∞∑
s=1

Mt+sD
a
t+s

]
= Pt +Bt+1 ,

5



where the second equality is derived using equations (A.3), (A.4), and the following two

identities

Φit = Iit∂Φit/∂Iit +Kit∂Φit/∂Kit ,

Πit = Kit∂Πit/∂Kit +Wit∂Πit/∂Wit .

Q.E.D.

3. From the definitions of rKit+1 and rWit+1 and the proof in Step 2, it is straightforward to show

that

wKit r
K
it+1 + (1− wKit )rWit+1 =

qKitKit+1r
K
it+1 +Wit+1r

W
it+1

qKitKit+1 +Wit+1

=
Da
it+1 + qKit+1Kit+2 +Wt+2

qKitKit+1 +Wit+1

=
Da
it+1 + Pt+1 +Bt+2

Pt +Bt+1

= wBit r
Ba
it+1 + (1− wBit )rSit+1 .

Q.E.D.

It is thus easy to show that the fundamental stock return, rFit+1, is given by

rFit+1 ≡ f (Xit, Xit+1|θt, θt+1)

=

{
(1− τt+1)

[(
Kit+1

∂Πit+1

∂Kit+1

+Wit+1
∂Πit+1

∂Wit+1

)
− ∂Φit+1

∂Kit+1

]
+ τt+1δit+1 +

Wit+1

Kit+1

+(1− δit+1)

[
1 + (1− τt+1)

∂Φit+1

∂Iit+1

]}/{(
1− wBit

) [
1 + (1− τt)

∂Φit

∂Iit
+
Wit+1

Kit+1

]}
−
wBit r

Ba
it+1

1− wBit
, (A.9)

and Section A.1 shows that Kit+1∂Πit+1/∂Kit+1 +Wit+1∂Πit+1/∂Wit+1 = γjt+1Yit+1, where γjt+1 =

γKjt+1 + γWjt+1.
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Note that the derivation in this Section holds for any model with production and adjustment

cost functions that are homogeneous of degree one in capital and investment. It also holds if

model parameters are time varying as long as parameter values are exogenously given. The role

of time-varying parameters in the model is analogous to that of time-varying productivity shocks.

A.3 Extended model with Asymmetric adjustment costs

For the quadratic adjustment cost function, we ignore the corner solution with investment being

zero since it happens in less than 0.1% of the observations in our sample. Equation (6) still holds if

we replace the adjustment costs parameter ajt for industry j at time t with ajt = a+
jtIIit>=0+a−jt(1−

IIit>=0) where IIit>=0 is an indicator equal to one if investment is positive and zero otherwise. For

the exponential adjustment cost function,

Φit ≡
θjt
ν2
jt

[
exp

(
−νjt

Iit
Kit

)
+ νjt

Iit
Kit

− 1

]
,

equation (A.9) implies that the fundamental return is given by

rait+1 =

{
(1− τt+1)

[
γjt+1

Yit+1

Kit+1

− θjt+1

v2
jt+1

[
exp

{
− Iit+1

Kit+1

vjt+1

}(
1 +

Iit+1

Kit+1

vjt+1

)
− 1

]]
+ τt1+δit+1 + (1− δit+1)

[
1 + (1− τt+1)

θjt+1

vjt+1

(
1− exp

{
−vjt+1

Iit+1

Kit+1

})]
+
Wit+1

Kit+1

}/{(
1− wBit

) [
1 + (1− τt)

θjt
vjt

(
1− exp

{
− Iit
Kit

vit

})
+
Wit+1

Kit+1

]}
+
wBit r

Ba
it+1

1− wBit
.

(A.10)

The estimation results are presented in Table A.4 and the implied fundamental anomalies are

presented in Table A.5.
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A.4 Extended model with adjustment costs on the working capital

investment

We extend the baseline model and add quadratic adjustment costs in working capital investment:

Φ(∆Wit,Wit) =
bjt
2

(
∆Wit

Wit

)2

Wit , where bjt is the adjustment costs parameter for industry j at

time t. We present the fundamental stock return in equation (A.11). Detailed derivations can be

found in Section E of Gonçalves, Xue and Zhang (2020) Online Appendix.

rFit+1 =

{
(1− τt+1)

[
γjt+1

(
Yit+1

Kit+1

)
+
ajt+1

2

(
Iit+1

Kit+1

)2

+
bjt+1

2

(
∆Wit+1

Wit+1

)2
Wit+1

Kit+1

+bjt+1

(
∆Wit+1

Wit+1

)
Wit+1

Kit+1

]
+ τt+1δit+1 + (1− δit+1)

[
1 + (1− τt+1)ajt+1

(
Iit+1

Kit+1

)]
+
Wit+1

Kit+1

}
/{(

1− wBit
) [

1 + (1− τt)ajt
(
Iit
Kit

)
+
Wit+1

Kit+1

(
1 + (1− τt)bjt

∆Wit

Wit

)]}
−
wBit r

Ba
it+1

1− wBit
,

(A.11)

The estimation results are presented in Table A.6 and the implied fundamental anomalies are

presented in Table A.7.

8



B Bayesian MCMC

Estimation of the model parameters σ and latent variables θ in the baseline model is very difficult

due to the high dimensionality. The total dimension of σ and θ that needs to be estimated is 1063

(that is, dim(θ) + dim(σ) = 2× 10× 53 + 3), which makes it impractical to use moment based or

maximum likelihood methods. We use the Bayesian MCMC method to overcome this estimation

difficulty. The main objective of Bayesian analysis is to make inferences about model parameters

σ and latent variables θ based on observations: X, rS, and rBa. That is, we need to estimate

P(σ,θ|X, rS, rBa), the so called joint posterior distribution of (σ,θ) given (X, rS, rBa).

According to Bayes’ rule, the joint posterior distribution is

P(θ,σ|X, rS, rBa)

=
P(θ,σ,X, rS, rBa)

P(X, rS, rBa)

∝P(rS|X, rBa;θ,σ)P(θ,σ)

=P(rS|X, rBa;θ,σ)P(θ|σ)π(σ),

(B.1)

where P(rS|X, rBa;θ,σ) is the conditional distribution of returns given fundamental variables,

latent variables and parameters, P(θ|σ) is the conditional distribution of latent variables given

parameters σ, and π(σ) is the joint prior distribution of σ.

More specifically, we define weighted scaled asset return 1

retit+1 = $
1/2
it ×

(
rSit+1 +

wBit r
Ba
it+1

1− wBit

)
=

$
1/2
it

1− wBit
rKit+1 + σre

r
it+1. (B.2)

The newly defined ret can be seen as a function of latent variables, which we denote function-

1We use the weighted scaled asset returns instead of stock returns to facilitate discussion of posterior distribu-
tions. Another benefit of using the weighted scaled asset returns is that they are homogeneous (of equal variance).
When the estimation is finished, we convert ret back to stock returns.
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ally, for firm i that belongs to industry j at time t+ 1 but to industry j′ at time t, as

retit+1 ≡ Λit+1

(
γjt+1, ajt+1, aj′t

)
+ σre

r
it+1, (B.3)

where Λit+1(γjt+1, ajt+1, aj′t) =
$

1/2
it

1−wBit
rKit+1 and rKit+1 is defined in (2).

We further assign conjugate inverse gamma distributions as priors for the parameters: σ2
r ∼

IG(κr1, κ
r
2), σ2

γ ∼ IG(κγ1 , κ
γ
2) and σ2

a ∼ IG(κa1, κ
a
2). With this variable transformation (retit+1) and

prior specifications, equation (B.1) can be written in proportion as:

P(θ,σ|X, rS, rBa) ∝
T−1∏
t=0

Nt+1∏
i=1

N
(
retit+1; Λit+1, σ

2
r

)
·
T−1∏
t=0

Nd∏
j=1

N
(
γjt+1; γjt, σ

2
γ

)
·
T−1∏
t=0

Nd∏
j=1

N
(
ajt+1; ajt, σ

2
a

)
·IG
(
σ2
r ;κ

r
1, κ

r
2

)
· IG

(
σ2
γ;κ

γ
1 , κ

γ
2

)
· IG

(
σ2
a;κ

a
1, κ

a
2

)
,

(B.4)

where Nt is the number of firms at time t, Nd is the number of industries, and T is the length of

the observation period.2

Given the high dimensionality of parameters and latent variables, it’s impossible to draw di-

rectly from this joint posterior distribution. However, the Clifford-Hammersley theorem indicates

that the joint posterior is equivalent to its complete conditionals. In other words, instead of draw-

ing directly from the 1063-dimensional joint posterior distribution, MCMC draws iteratively from

1063 one-dimensional complete conditionals individually, resulting in legitimate draws from the

target joint posterior distribution.

Specifically in our model, the joint posterior distribution of parameters σ and latent variables

θ given returns and fundamental variables, the target, is equivalently characterized by its complete

2$ is not present in the formula to be consistent with equation (B.1). Besides, it has no influence in the
following derivation. Also note that in equation (B.4), no prior distributions for latent variables are assigned
because we treat the initial latent variables γj0 and aj0 as unknown constants. The driver for the evolvement of
latent variables is fully explained by the variances of eγjt+1 and eajt+1 so we do not assign priors to the other latent
variables, either.
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conditional posteriors:

P(θ,σ|X, rS, rBa)⇐⇒ P(θ|σ,X, rS, rBa) and P(σ|θ,X, rS, rBa). (B.5)

Therefore, we simulate the posterior samples of each parameter and latent variable (of σ and

θ) from the complete conditionals as follows iteratively. Given initial values (σ(0),θ(0)), for the

current (g + 1)th iteration:

• draw θ(g+1) ∼ P(θ|σ(g),X, rS, rBa);

• draw σ(g+1) ∼ P(σ|θ(g+1),X, rS, rBa),

where σ(g) is the MCMC draw from the previous iteration.

It is worth noting that there are two advantages of using MCMC algorithms to implement

the above iterative procedure: (1) MCMC samplers do not require a closed form of the poste-

rior distribution and (2) MCMC samplers need only the conditional posterior up to a constant

proportion. In implementing MCMC, Metropolis-Hastings embedded Gibbs sampler is used for

estimation in our paper. Whenever the closed form for complete conditional posterior distribution

is not directly attainable, we use Metropolis-Hastings algorithm. For a thorough discussion of

Gibbs sampling and Metropolis-Hastings, see Robert and Casella (2013).

For time t+ 1, t ∈ [0, T − 1] and industry j ∈ [1, Nd], let Djt+1 be the set of firms that belong

to industry j at time t+ 1 and let Ejt+1 be the set of firms that belong to industry j at time t and

exist at time t+ 1. We derive the complete conditional posterior distributions of latent variables

γjt+1 and ajt+1 and parameters σ2
r , σ

2
γ and σ2

a (in a proportional form) as follows:
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Posterior for γjt+1:

For the latent variables γjt+1, the posterior is normal. Let 1condition be the indicator function, i.e.,

1 = 1 when condition holds, and otherwise, 1 = 0:

p

(
γjt+1

∣∣∣∣ {γjt} ,{ajt} , σ2
r , σ

2
γ, σ

2
a

)
∝ N

(
γjt+1;

v1

u1

,
1

u1

)
, (B.6)

where

u1 :=
1

σ2
r

∑
i∈Djt+1

A2
it+1 +

1 + 1t+1/∈{1,T}

σ2
γ

,

v1 :=
1

σ2
r

∑
i∈Djt+1

ϕit+1Ait+1 +
1

σ2
γ

(γjt1t≥0 + γjt+21t+2≤T ),

ϕit+1 :=retit+1 −$1/2
it ×

τit+1δit+1 + Wit+1

Kit+1
+ (1− δit+1)

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

]
−$1/2

it ×
1
2
(1− τit+1)

(
Iit+1

Kit+1

)2

+ (1− δit+1)(1− τit+1) Iit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] ajt+1,

and Ait+1 :=$
1/2
it ×

(1− τit+1) Yit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] .

Posterior for ajt+1:

For adjustment costs parameters ajt+1, there are no clear closed form posterior distributions. We

implement Metropolis-Hastings. It is a propose-reject method which first proposes a candidate

draw and then decide whether a jump is made from the current state to the proposed. Depending

on the difference of proposal distributions, there are many variations under this generic heading.

In our paper, the candidate is chosen in a manner that exploits as much information from the

posterior distributions as possible.
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We first consider the posterior of ajt+1 although it is not clear what distribution it follows:

p

(
ajt+1

∣∣∣∣ {γjt+1

}
,
{
ajt+1

}
, σ2

r , σ
2
γ, σ

2
a

)
∝

T−1∏
t=0

N∏
i=1

N
(
retit+1; Λit+1, σ

2
r

) T−1∏
t=0

N
(
ajt+1; ajt, σ

2
a

)
.

(B.7)

We propose from

N
(
ajt+1;

v2

u2

,
1

u2

)
(B.8)

where

u2 :=
1

σ2
r

∑
i∈Djt+1

B2
it+1 +

1 + 1t+1/∈{1,T}

σ2
a

,

v2 :=
1

σ2
r

∑
i∈Djt+1

ψit+1Bit+1 +
1

σ2
a

(ajt1t≥0 + ajt+21t+2≤T ) ,

ψit+1 :=retit+1 −$1/2
it ×

τit+1δit+1 + Wit+1

Kit+1
+ (1− δit+1)

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] ,
−$1/2

it ×
(1− τit+1) Yit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

]γjt+1,

and Bit+1 :=$
1/2
it ×

1
2
(1− τit+1)

(
Iit+1

Kit+1

)2

+ (1− δit+1)(1− τit+1) Iit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] .

To decide whether to accept the candidate, let 3

π(x) =
∏

i∈Djt+1

N
(
retit+1; Λit+1

(
γjt+1, x, ait

)
, σ2

r

)
·
∏

i∈Ejt+2

N
(
rit+2; Λit+2

(
γit+2, ait+2, x

)
, σ2

r

)
·N
(
x; ajt+2, σ

2
a

)
· N
(
x; ajt, σ

2
a

)
.

3Here a slight abuse of notation for generality is that we change aj′t to ait to indicate that firms belong to
different industries at time t. Similarly, we use γit to indicate firms belong to different industries at time t.
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The acceptance rate α is then

α =
π(apropjt+1)

π(ajt+1)
·
N
(
ajt+1;

v2

u2

,
1

u2

)
N
(
apropjt+1;

v2

u2

,
1

u2

) =

∏
i∈Ejt+2

N
(
rit+2; Λit+2

(
γit+2, ait+2, a

prop
jt+1

)
, σ2

r

)
∏

i∈Ejt+2
N
(
rit+2; Λit+2

(
γit+2, ait+2, a

(g−1)
jt+1

)
, σ2

r

) .

Posteriors for σ2
r , σ

2
γ and σ2

a:

The posterior distributions for parameters σ2
r , σ

2
γ and σ2

a are:

p

(
σ2
r

∣∣∣∣ {γjt} ,{ajt} , σ2
γ, σ

2
a

)
∼ IG

(
κr1 +

∑T−1
t=0 Nt+1

2
, κr2 +

1

2

T−1∑
t=0

N∑
i=1

(retit+1 − Λit+1)2

)
. (B.9)

p

(
σ2
γ

∣∣∣∣ {γjt} ,{ajt} , σ2
r , σ

2
a

)
∼IG

(
κγ1 +

NdT

2
, κγ2 +

1

2

T−1∑
t=0

Nd∑
k=1

(γjt+1 − γjt)2

)
. (B.10)

p

(
σ2
a

∣∣∣∣ {γjt} ,{ajt} , σ2
r , σ

2
γ

)
∼IG

(
κa1 +

NdT

2
, κa2 +

1

2

T−1∑
t=0

Nd∑
k=1

(ajt+1 − ajt)2

)
. (B.11)

where κr1, κr2, κγ1 , κγ2 , κa1 and κa2 are prior parameters for prior inverse gamma distributions.

In each MCMC iteration, a systematic scan is used, i.e., we sample by a pre-specified order the

parameters/latent variables from the above posterior distribution conditional on the most updated

information. After all the parameters and latent variables are updated, a new iteration is started.

We run 20,000 iterations in total and use the last 5,000 iterations to obtain posterior means and

95% credible intervals.
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C Timing alignment

In this section, we explain the timing of variables used to construct fundamental return and how

we align the timing of fundamental return with that of actual return. As we explain in Section

3.1, model-implied fundamental returns are constructed in annual frequency. In the model, time-t

stock variables (such as capital K and debt B) are at the beginning of year t, and time-t flow

variables (such as sales Y and depreciations) are over the course of year t. Thus, time-t stock

variables are obtained from the balance sheet of fiscal year t−1 and flow variables from the balance

sheet of fiscal year t.

To construct the fundamental return for firm i from t to t + 1, rFit+1, we need accounting

information from fiscal year t − 1 to construct Kit, accounting information from fiscal year t

to construct Kt+1 and leverage ratio wit (defined as the ratio of total debt Bit+1 to the sum of

total debt and market equity Vit − Dit), and accounting information from fiscal year t + 1 to

construct Yit+1, δit+1, and Kit+2. Finally, Iit and Iit+1 is constructed based on the law of motion:

Iit = Kit+1 − (1− δit)Kit and Iit+1 = Kit+2 − (1− δit+1)Kit+1, respectively.

The fundamental return rFit+1 computed based on equation (6) corresponds to return of the

12-month period between the 5th month prior the fiscal year t ending month till the 6th month

after, namely rSit+1. Parameters are estimated by matching rFit+1 with rSit+1 for the entire sample.

Our timing alignment is consistent with that in GXZ, who construct monthly fundamental

returns from annual accounting variables to match with monthly stock returns. For each month,

they take firm-level accounting variables from the fiscal year end that is closest to the month in

question to measure (flow) variables dated t in the model and take accounting variables from the

subsequent fiscal year end to measure (flow) variables dated t+ 1 in the model.

For comparison with GXZ, we construct fundamental returns in monthly frequency for anomaly

portfolios between June 1967 and December 2016. However, it is important to note that the

accounting variables underlying the fundamental returns for June 1967 can come from the fiscal
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year ending in calendar time as early as December 1965, and the accounting variables underlying

the fundamental returns for December 2016 can come from as late as May 2018. It also means that

in terms of the fundamental returns in annual frequency (in fiscal year), we need to have returns

of as early as fiscal year 1967 and as late as fiscal year 2018. For example, if a firm i’s fiscal ending

month is May and its return on December 2016 is aligned with the fundamental return of fiscal

year 2018 (from year 2017 to year 2018). On the other hand, if a firm i’s fiscal ending month is

December and its return on June 1967 is aligned with the fundamental return of fiscal year 1967.

Equation (6) shows that the year t value of fundamental return depends on the adjustment

cost parameters in t − 1 and t. To compute the fundamental returns in the starting year of our

sample, we assume that the t and t − 1 values of the adjustment cost parameter for the starting

year t are the same. For accuracy, returns of the starting year in the estimation are not used in

our analysis of portfolio returns. Therefore, parameters are estimated by matching fundamental

and actual returns in annual frequency between 1966 and 2018, and fundamental returns between

1967 and 2018 are used to construct monthly returns of anomaly portfolios between June 1967

and December 2016.
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D Comparison of Bayesian and NLS via simulation studies

Frequentist methods, such as Nonlinear Least Squares (NLS), can also be used to match firm-level

stock returns. Under NLS, parameter values are chosen to minimize the sum of squared estimates

of errors sequentially as follows. For parameter θjt+1, for j = 1, . . . , Nd and t = 1, . . . , T − 1:4

θ̂NLSjt+1 = arg min
θjt+1

Njt+1∑
i=1

$it

[
f
(
Xit, Xit+1|θ̂NLSjt , θjt+1

)
− rSit+1

]2

, (D.1)

where Njt+1 is the number of firms in industry j at time t+1, θ̂NLSjt is the estimated parameters for

industry j at t, and $it−1, which is proportional to the market equity Vit−1 as defined in equation

(9), is used to be consistent with our Bayesian MCMC estimates. For t = 0, we assume that

θj0 = θj1 so the NLS estimate is

θ̂NLSj1 = arg min
θj1

Nj1∑
i=1

$i0

[
f (Xi0, Xi1|θj1, θj1)− rSi1

]2
, for j = 1, . . . , Nd.

In this section, we use simulation studies to examine the advantages of Bayesian MCMC over

NLS.

Figure A.2 plots the true values (in red solid lines), the NLS estimates (in green lines with

triangle markers), and the Bayesian posterior means (in blue dashed lines) and the associated 95%

4The NLS estimates with industry variations only, time variations only, and the estimates with constant values
are obtained, respectively, as follows:

θ̂NLSj = arg min
θj

T−1∑
t=0

Njt∑
i=1

$it

[
f (Xit, Xit+1|θj , θj)− rSit+1

]2
, for j = 1, . . . , Nd ,

θ̂NLSt+1 = arg min
θt+1

Nd∑
j=1

Njt∑
i=1

$it

[
f
(
Xit, Xit+1|θ̂NLSt , θt+1

)
− rSit+1

]2
, for t = 0, . . . , T − 1 ,

and

θ̂NLS = arg min
θ

T−1∑
t=0

Nd∑
j=1

Njt∑
i=1

$it

[
f (Xit, Xit+1|θ, θ)− rSit+1

]2
.
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credible intervals (in shaded areas) of the model parameters θ estimated from the simulated data

under the specification with industry specific and time varying parameters. Credible interval is

frequently used in Bayesian framework. It refers to the interval wherein a random variable (here

a parameter) falls with the specified probability. It is an interval in the domain of a posterior

distribution of a parameter. Because we assume parameters to be random variables in Bayesian

framework, we can calculate the probability that a parameter locates in a given interval based on

its posterior distribution. Notationally, let Ip be the posterior credible interval of θ that satisfies

P (θ ∈ Ip|X, rS, rBa) = p, where p is the probability.

Figure A.2 shows that the NLS estimates are often very far from the true. On the contrary, the

true values of the model parameters are almost always confined in the narrow credible intervals

of the Bayesian MCMC posterior distributions. The posterior means imply small relative mean

absolute errors (m.a.e.) of 3.59% and 3.37% on average across industries for γ and for a, respec-

tively. Similar results are found in the specification with time variation in parameter values only

and the results are plotted in Figure A.3 in the Internet Appendix.

Table A.8 reports the true values, the NLS estimates, and the Bayesian posterior means and

associated credible intervals of the model parameters under the specification with only industry

variation in Panel A and under the specification with constant parameter values in Panel B.

As under the specifications with time-varying parameter values, the 95% credible intervals from

the Bayesian estimation always cover the corresponding true values. Bayesian estimates again

have smaller estimation errors in general, although the differences between the NLS and Bayesian

estimates are smaller when parameters are not time varying. For example, with constant parameter

values, the Bayesian posterior means of γ and a are 0.1500 and 0.1300, which are identical to the

true values (up to the fourth digit), while the the corresponding NLS estimates are 0.1501 and

0.1280.

Bayesian MCMC estimation approach is fundamentally different from NLS and GMM. Bayesian

MCMC is able to extract more information from the data than these two frequentist methods. In
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essence, these frequentist methods choose model parameters to match a given set of moments. In

the case of NLS, the matching moments are

Njt+1∑
i=1

$it

∂f
(
Xit, Xit+1|θ̂NLSjt , θjt+1

)
∂θjt+1

[
f
(
Xit, Xit+1|θ̂NLSjt , θjt+1

)
− rSit+1

]
= 0 ,

for j = 1, . . . , Nd and t = 1, . . . , T − 1 and

Nj1∑
i=1

$i0
∂f(Xi0, Xi1|θj1, θj1)

∂θj1

[
f(Xi0, Xi1|θ1j, θ1j)− rSi1

]
= 0, for j = 1, . . . , Nd,

assuming θj0 = θj1, where 0 are vectors of zeros of corresponding dimensions.5 In the case of GMM

used in Liu, Whited and Zhang (2009) and Gonçalves, Xue and Zhang (2020) among others, the

matching moments are the average returns of the testing portfolios. By matching moments only,

these frequentist methods fail to capture the detailed information in each firm-year observation,

which, on the contrary, is utilized in Bayesian MCMC. The posterior likelihood in equation (10)

captures the entire posterior distributions of the firm-level stock returns.

5The matching moments under the specification with industry variations only, time variations only, and with
constant parameter values are given, respectively, by:

T−1∑
t=0

Njt∑
i=1

$it
∂f (Xit, Xit+1|θj , θj)

∂θj

[
f (Xit, Xit+1|θj , θj)− rSit+1

]
= 0 , for j = 1, . . . , Nd ,

Nd∑
j=1

Njt∑
i=1

$it

∂f
(
Xit, Xit+1|θ̂NLSt , θt+1

)
∂θt+1

[
f
(
Xit, Xit+1|θ̂NLSt , θt+1

)
− rSit+1

]
= 0 , for t = 0, . . . , T − 1 ,

and
T−1∑
t=0

Nd∑
j=1

Njt∑
i=1

$it
∂f (Xit, Xit+1|θ, θ)

∂θ

[
f (Xit, Xit+1|θ, θ)− rSit+1

]
= 0 .
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E Simulation study

We use simulation studies to examine whether Bayesian MCMC can discover the true parameter

values under our model framework, which is highly nonlinear. We combine the accounting informa-

tion of a subsample of firms and a pre-determined set of parameter values to generate a simulated

panel of firm-level stock returns based on equations (6) and (8). For simplicity, we require the

subsample used in the simulation to be a balanced panel of 1,052 firms for 15 years, which covers

seven out of the ten Fama-French industries. We make sure that the simulated returns have a

similar distribution as that of the realized returns. Based on the simulated data, we estimate the

posterior distributions of the model parameters using Bayesian MCMC to check whether these

estimates can discover the true parameter values, i.e., the pre-determined parameter values used

to generate the simulated data. It is worth noting that using firms’ true accounting information

to construct the simulated data increases the difficulty of the estimation due to the non-normal

distributions of these accounting variables as shown in Gonçalves, Xue and Zhang (2020). Simu-

lation studies are done for all four specifications: parameters with constant values, with industry

variations only, with time variations only, and with industry and time variations. The simulation

study is implemented in four steps.

1. We select a balanced panel of 1, 052 firms from seven industries between 1991 to 2005, all

of which have no missing variables needed to construct fundamental returns during the 15-

year period. These seven industries are Consumer nondurables, Manufacturing, Business

equipment, Wholesale, Healthcare, Utilities, and Others. Note that our methodology does

not require a balanced panel. The only requirement is to have financial and accounting

information of a firm for at least three consecutive years from year t − 1 to t + 1, which is

required to compute the fundamental return at year t. The choice of a balanced panel is for

simplicity.
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2. We generate the time series of the latent variables by simulating random walk processes

according to equation (7) for each of the seven industries, denoted as θ. The standard

deviations of these random walk processes, σγ and σa, are chosen to be 0.1 and 0.3, which

are close to the estimated magnitudes. The time 0 value of the technology parameter γj0

of industry j is randomly chosen from a logic-transformed-normal distribution to ensure

that the technology parameter falls into the range between 0 and 1. The time 0 value

of the adjustment cost parameter aj0 is drawn from a normal distribution with mean and

standard deviation being 5 and 0.3. The mean of the distribution is close to the estimates

in Gonçalves, Xue and Zhang (2020).

3. We generate stock returns for firm i in the selected subgroup based on equation (8) added

with white noises, i.e.,

rSit+1 = f (Xit,Xit+1|θt,θt+1) +$
−1/2
it+1 σre

r
it+1 ,

where Xit is the accounting information of firm i at time t, $
−1/2
it is computed based on

equation (9) using firm i’s financial information, σr is set to be 5%, and erit+1 follows the

standard normal distribution so that the volatility of the simulated returns rSit+1 is compa-

rable to the volatility of the corresponding observed stock returns. The simulated sample of

firm-level stock returns has mean, standard deviation, and skewness of 0.66, 1.09, and 7.63,

compared with 0.21, 0.71, and 9.78 in the data for the sample.

4. Using the Bayesian MCMC method in Section 3.2, we draw from the posterior distributions

of the latent variables given the financial and accounting information X and the simulated

stock return rS of this subgroup of firms. The initial guesses, θ
(0)
jt+1, for industry j at time

t + 1 are the minimizers of the residual sum of squares (RSS) of firm-level stock returns of
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firms in industry j at time t+ 1 given θ
(0)
t , defined as

θ
(0)
jt+1 = argmin

Nj∑
i=1

[
f
(
Xit,Xit+1|θ(0)

t ,θt+1

)
− rSit+1

]2

.

Assuming that θ
(0)
j0 = θ

(0)
j1 , the initial guesses for t = 1, · · · , T can be estimated sequentially.

We have tried constant initial guesses and the estimation converges to the same posterior

distributions. It shows that our method is robust to the choice of initials.

Figure A.2 plots the true values (in red solid lines), the nonlinear least square (NLS) estimates

used as initial guesses (in green lines with triangle markers), and the Bayesian posterior means

(in blue dashed lines) and the associated 95% credible intervals (in shaded areas) of the model

parameters θ estimated from the simulated data under the specification with industry specific and

time varying parameters.

Figure A.2 shows that the true values of the model parameters are almost always confined in

the narrow credible intervals of the Bayesian MCMC posterior distributions, even when the initial

guesses are far away from the true values. The posterior means imply small relative mean absolute

errors (m.a.e.) of 3.59% and 3.37% on average across industries for γ and for a, respectively.

Similar results are found for the other three specifications. The results for the specification with

time variation in parameter values only are plotted in Figure A.3. The results for the specification

with industry variation in parameter values only and for the specification with constant parameter

values are reported in Table A.8. in the Internet Appendix.

In sum, the simulation studies suggest that Bayesian MCMC performs very well for our highly

nonlinear model and is able to discover the true parameter values under all four specifications.
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F Comparative statistics

Given equation (6), it is straightforward to show that:

∂rFit+1

∂(Iit/Kit)
=

−(1− τt)rFwaccit+1 ajt

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] < 0 (F.1)

∂rFit+1

∂(Iit+1/Kit+1)
=

(1− τt+1)
(

1 + Iit+1

Kit+1
− δit+1

)
ajt+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] > 0 (F.2)

∂rFit+1

∂(Yit+1/Kit+1)
=

(1− τt+1)γjt+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] > 0 (F.3)

∂rFit+1

∂(Wit+1/Kit+1)
=

1− rFwaccit+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] , (F.4)

where rFwaccit+1 is firm i’s fundamental weighted average cost of capital, defined as rFwaccit+1 ≡ (1 −

wBit )r
F
it+1 + wBit r

Ba
it+1.

Since the denominator of all the above derivatives is positive, the signs of these partial deriva-

tives are determined by the numerator. The signs of the derivative of rFit+1 with respect to Iit/Kit,

Iit+1/Kit+1 and Yit+1/Kit+1, are clearly negative, positive, and positive, respectively. Fundamental

return decreases with Wit+1/Kit+1 if rFwaccit+1 > 1, and vice versa. Since cost of capital is in gen-

eral positive, i.e., rFwaccit+1 > 1, we expect the relation between rFit+1 and Wit+1/Kit+1 to be mostly

negative.

It is straightforward to see that the magnitude of
∂rFit+1

∂(Yit+1/Kit+1)
increases with the value of

γ, that is, a unit differences in Yit+1/Kit+1 leads to larger fundamental return spread when the

magnitude of γ is larger. The relation of the other three derivatives with model parameters a and

γ depends on the values of firm characteristics such as investment rate and sales-to-capital ratio,

and thus varies across firms in general.

For illustration purpose, we derive the relation of the other three derivatives with constant
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model parameters a and γ at the steady state where firm characteristics equal the sample averages,

i.e., Iit/Kit = ik, Yit+1/Kit+1 = yk, Wit+1/Kit+1 = wk, w
B
it = wB, τt = τ , and δit = δ. We can show

that

∂rFwacct+1

∂ a
= −(1− τ)ik[(wk + τ)δ + (1− τ)γyk − (1 + wk)ik/2]

[1 + wk + (1− τ)ika]2

and

∂

∂ a

∣∣∣∣ ∂rFt+1

∂(It/Kt)

∣∣∣∣ =

(
1− τ

1− wB

){
[(1 + wk)− aik(1− τ)]γyk + (1− τ)ika[(1− τ)(1− δ) + (wk + τ)(1− 2δ)]

+ (1 + wk)[τδ + (1− δ) + wk]

}/
[1 + wk + (1− τ)ika]3 > 0

∂

∂ a

∂rFt+1

∂(It+1/Kt+1)
=

(
1− τ

1− wB

)
(1 + wk)(1 + ik − δ)

[1 + wk + (1− τ)ika]2
> 0 .

The signs of the above derivatives hold when the values of firm characteristics are at the sample

averages, that is, ik = 0.37, wk = 3.60, yk = 3.09, γ = 0.15, δ = 0.19, and τ = 0.39.
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Table A.1: Summary statistics of the realized and fundamental firm-level stock returns
under NLS estimation

This table reports the following key statistics for the realized (rS) and fundamental (rF ) firm-level stock returns:

mean, standard deviation, skewness, kurtosis, mean absolute error (m.a.e.) of the fundamental returns, and the

time series average of cross-sectional correlations between the realized and fundamental returns. The m.a.e. is

defined as m.a.e. ≡ 1

T

∑T−1
t=0

1

Nt+1

∑Nt+1

i=1 |rSit − rFit |, where Nt+1 is the number of firms in period t + 1. Both

realized and fundamental returns are winsorized at 0.5 and 99.5 percentiles. The fundamental stock returns are

computed based on four model setups: the setup (under column θ) in which the estimated parameters are constant

over time and across industries; the setup (θj) in which the estimated parameters are industry specific but constant

over time; the setup (θt) in which the estimated parameters are time varying but constant across industries; and

the baseline setup (θjt) in which the estimated parameters are industry specific and time varying. The sample

period is from June 1967 to December 2016.

Data θ θj θt θjt

mean 14.45 14.89 20.77 14.09 14.71

StdDev 60.78 19.75 23.69 30.12 32.82

Skewness 2.15 2.13 2.07 1.05 1.34

Kurtosis 11.05 13.36 10.98 11.40 11.84

Correlation na 0.09 0.09 0.15 0.17

m.a.e. na 42.45 44.25 43.66 43.41
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Table A.2: Anomaly premiums under alternative estimation specifications

This table reports the posterior means of the fundamental factor premiums (rF ) and the alphas (α = rS − rF )

of the 12 anomalies, with the posterior means of the corresponding t-statistics in parentheses. Fundamental stock

returns are computed based on four estimation specifications: the specification (under column θ) with constant

parameter values; the specification (θj) with industry variations in parameter values only; the specification (θt)

with time variations only; and the baseline specification (θjt) with industry-specific and time-varying parameter

values. The fundamental premiums and alphas that are significant at the 1%, 5%, and 10% levels are denoted with

three stars, two stars, and one star, respectively. The sample period is from June 1967 to December 2016 for all

anomaly variables except for ROA, RD/M, and Ad/M, for which the sample starts at December 1972, December

1976, and December 1973, respectively, due to data availability.

rF α

θ θj θt θjt θ θj θt θjt

BM −3.25∗ −0.64 −3.78∗∗ 0.46 9.99∗∗∗ 7.38∗∗∗ 10.52∗∗∗ 6.28∗∗∗

(−1.95) (−0.52) (−2.17) (0.26) (4.23) (3.25) (4.20) (3.33)

R11 3.82∗∗∗ 3.59∗∗∗ 5.75∗∗∗ 11.82∗∗∗ 9.92∗∗∗ 10.16∗∗∗ 8.00∗∗∗ 1.93

(6.38) (7.75) (6.88) (12.51) (3.82) (4.06) (2.93) (0.78)

I/A 0.48 −0.06 −0.68 −3.08∗∗ −6.78∗∗∗ −6.24∗∗∗ −5.62∗∗∗ −3.22∗∗

(0.48) (−0.09) (−0.43) (−2.25) (−4.03) (−3.42) (−3.18) (−2.10)

ROE 4.72∗∗∗ 3.89∗∗∗ 5.32∗∗∗ 4.62∗∗∗ 2.97 3.80∗∗ 2.36 3.07∗

(9.30) (9.65) (9.26) (5.72) (1.60) (2.10) (1.29) (1.81)

Size −8.10∗∗∗ −5.82∗∗∗ −7.57∗∗∗ −5.99∗∗∗ 3.26 0.98 2.73 1.15

(−8.84) (−8.62) (−6.05) (−5.63) (0.93) (0.28) (0.73) (0.34)

Accruals 9.01∗∗∗ 4.90∗∗∗ 8.80∗∗∗ 4.74∗∗∗ −14.59∗∗∗ −10.48∗∗∗ −14.38∗∗∗ −10.32∗∗∗

(16.76) (7.96) (14.55) (4.45) (−8.08) (−5.96) (−7.68) (−6.28)

NSI −4.70∗∗∗ −2.80∗∗∗ −4.59∗∗∗ −3.05∗∗∗ −2.96 −4.85∗∗ −3.07 −4.60∗∗∗

(−7.18) (−4.28) (−6.70) (−3.36) (−1.51) (−2.44) (−1.49) (−2.93)

∆PI/A −2.29∗∗ −4.21∗∗∗ −3.12∗∗ −5.79∗∗∗ −3.50∗ −1.58 −2.67 −0.01

(−2.26) (−6.99) (−2.07) (−4.81) (−1.90) (−0.87) (−1.48) (−0.00)

GP/A 15.28∗∗∗ 6.77∗∗∗ 15.48∗∗∗ 7.26∗∗∗ −11.42∗∗∗ −2.90 −11.61∗∗∗ −3.39∗∗∗

(19.27) (13.05) (14.63) (5.84) (−5.20) (−1.47) (−5.41) (−2.63)

ROA 3.84∗∗∗ 3.06∗∗∗ 4.10∗∗∗ 3.80∗∗∗ 2.62 3.40∗ 2.35 2.66

(6.85) (6.25) (5.80) (3.99) (1.34) (1.77) (1.24) (1.48)

RD/M 0.52 2.52∗ 0.47 5.24∗∗ 8.18∗∗ 6.18 8.22∗∗ 3.46

(0.49) (1.92) (0.50) (2.12) (1.97) (1.49) (2.07) (1.42)

Ad/M 14.14∗∗∗ 6.39∗∗∗ 13.89∗∗∗ 7.46∗∗∗ −8.04∗∗∗ −0.29 −7.79∗∗ −1.36

(8.96) (5.75) (7.32) (2.82) (−2.71) (−0.10) (−2.42) (−0.58)
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Table A.5: Anomaly premiums and alphas under asymmetric adjustment costs

The fundamental anomaly premiums, rF , and the corresponding alphas, α ≡ rS − rF , of the 12 anomalies are

reported for two estimated models with quadratic and exponential, respectively, asymmetric adjustment costs

functions under Columns ’Quadratic’ and ’Exponential’. Fundamental returns are computed using the posterior

means of the parameter estimates. The t-values are adjusted for heteroscedasticity and autocorrelations with lags

up to 24 months. Returns are in percentage per annum. The sample period is from June 1967 to December 2016

for all anomaly variables except for ROA, RD/M, and Ad/M, for which The sample starts at December 1972,

December 1976, and December 1973, respectively, due to data availability.

rF αH−L

Quadratic Exponential Quadratic Exponential

BM
0.42 −0.18 6.32 6.92

(0.24) (−0.10) (3.36) (3.72)

R11
11.91 14.27 1.84 −0.52

(12.43) (12.51) (0.75) (−0.21)

I/A
−3.09 −1.17 −3.21 −5.13

(−2.28) (−0.94) (−2.09) (−2.84)

ROE
4.71 7.06 2.97 0.63

(5.82) (7.66) (1.76) (0.37)

Size
−5.96 −2.68 1.12 −2.16

(−5.53) (−1.77) (0.33) (−0.55)

Accruals
4.79 5.23 −10.37 −10.81

(4.49) (3.71) (−6.37) (−6.28)

NSI
−3.02 −2.86 −4.63 −4.79

(−3.34) (−2.32) (−2.98) (−2.96)

∆P/A
−5.78 −3.76 −0.01 −2.03

(−4.82) (−3.67) (−0.01) (−1.02)

GP/A
7.25 5.95 −3.38 −2.09

(5.89) (3.06) (−2.65) (−1.38)

ROA
3.92 5.31 2.54 1.15

(4.07) (4.35) (1.42) (0.66)

RD/M
5.35 2.43 3.35 6.27

(2.14) (0.95) (1.39) (1.76)

Ad/M
7.41 5.28 −1.31 0.82

(2.81) (2.79) (−0.56) (0.33)
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Table A.7: Anomaly premiums and alphas under the extended model with adjustment
costs in working capital investment

The fundamental anomaly premiums, rF , and the corresponding alphas, α ≡ rS − rF , of the 12 anomalies are

reported for the estimated extended model with adjustment costs in working capital investment. Fundamental

returns are computed using the posterior means of the parameter estimates. The t-values are adjusted for het-

eroscedasticity and autocorrelations with lags up to 24 months. Returns are in percentage per annum. The sample

period is from June 1967 to December 2016 for all anomaly variables except for ROA, RD/M, and Ad/M, for which

The sample starts at December 1972, December 1976, and December 1973, respectively, due to data availability.

rF αH−L

BM 1.58 5.19
(0.87) (2.72)

R11 12.12 1.55
(11.40) (0.66)

I/A −3.17 −3.07
(−2.27) (−2.19)

ROE 3.74 3.89
(5.01) (2.27)

Size −7.06 2.22
(−5.76) (0.68)

Accruals 4.65 −10.22
(3.86) (−5.98)

NSI −3.81 −3.84
(−4.03) (−2.61)

∆P/A −6.20 0.47
(−4.94) (0.37)

GP/A 6.44 −2.50
(4.80) (−1.65)

ROA 3.14 3.23
(3.50) (1.74)

RD/M 5.38 3.23
(2.17) (1.27)

Ad/M 7.84 −1.70
(2.80) (−0.71)
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Table A.8: Simulation study: Bayesian MCMC vs. NLS

This table reports the true values, the NLS estimates and its confidence interval (in square brackets), and Bayesian

posterior means and credible intervals (in square brackets) of the model parameters, γ and a, under the specification

with only industry variation in Panel A and under the specification with constant parameter values in Panel B.

Bootstrap method (Efron and Tibshirani, 1994) is implemented to calculate the confidence intervals for NLS because

the parameters are estimated with constraints. We sample the simulation data sample (13,038 observations) with

replacement from the original data set and estimate the parameters. This with-replacement-sampling-estimating

procedure is repeated for 1,000 times to obtain the confidence intervals of the NLS estimates.

γ a

True NLS Bayesian True NLS Bayesian

Panel A: Parameters with industry variations only

Consumer Nondurables 0.3295 0.3293 0.3293 5.4954 5.5691 5.5625

[0.3237, 0.3344] [0.3241, 0.3347] [5.4704, 5.6489] [5.4930, 5.6502]

Manufacturing 0.7138 0.7107 0.7112 3.9548 3.9581 3.9596

[0.7051, 0.7157] [0.7065, 0.7158] [3.8781, 4.0064] [3.9129, 4.0013]

Business Equipment 0.6348 0.6378 0.6356 6.0973 6.0769 6.0235

[0.6284, 0.6472] [0.6281, 0.6421] [5.8760, 6.2607] [5.8258, 6.1722]

Wholesale & Retail 0.5154 0.5178 0.5180 5.0573 5.0686 5.0888

[0.5135, 0.5224] [0.5138, 0.5219] [4.9370, 5.1793] [4.9892, 5.1812]

Healthcare 0.3791 0.3813 0.3800 5.5589 5.5051 5.5078

[0.3741, 0.3897] [0.3723, 0.3875] [5.3258, 5.6259] [5.4267, 5.5977]

Utilities 0.3068 0.2902 0.2901 4.8656 4.8718 4.8729

[0.2751, 0.3049] [0.2769, 0.3030] [4.8388, 4.9055] [4.8470, 4.8986]

Other 0.4607 0.4666 0.4661 6.1648 6.1627 6.1626

[0.4549, 0.4764] [0.4559, 0.4763] [6.0917, 6.2243] [6.1346, 6.1926]

Panel B: Parameters with constant values

0.1500 0.1501 0.1500 0.1300 0.1280 0.1300

[0.1481, 0.1523] [0.1487,0.1520] [0.1025, 0.1511] [0.1297,0.1407]
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Figure A.1: Replication of Panel B Figure 3 in Gonçalves, Xue and Zhang (2020)

Both the fundamental and realized decile returns are in percentage per annum. The book-to-market (BM) deciles

(except for the two extreme deciles) are in blue circles, the momentum (R11) deciles in red squares, the asset

growth (I/A) deciles in green diamonds, and the return-on-equity (ROE) deciles in black triangles. The low BM

decile is denoted by “L” and the high BM decile by ”H”.
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Figure A.2: Simulation study

This figure plots the true values (in red solid lines), the NLS estimates (in green lines with triangle markers), the

Bayesian MCMC posterior means (in blue dashed lines) and the 95% credible intervals (in shaded areas) of the

model parameters estimated from the simulated data. The marginal product and adjustment costs parameters of

Consumer Nondurables, Manufacturing, Business Equipment industries, Wholesale & Retail, Healthcare, Utilities,

and Others industries are denoted as γj and aj for j = 1, 2, 3, 4, 5, 6, 7, respectively..
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Figure A.3: Simulation study: parameters with time variations only

This figure plots the time series of the true values (in red solid lines), the NLS estimates (in green lines with triangle

markers), the Bayesian MCMC means (in blue dashed lines) and the 95% credible intervals (in shaded areas) of

the model parameters estimated from the simulated data. The marginal product parameter is denoted as γ and

the adjustment costs parameter is denoted as a.
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Figure A.4: Time series of parameter estimates

This figure presents the time series of the posterior means (in solid line) and 95% credible intervals (in dotted

line) of the marginal product parameter γ and physical adjustment costs parameter a under the specification

with time-varying parameter values in Panel A, and for Fama-French 10 industries under the specification with

industry-specific and time-varying parameter values in Panel B.
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Figure A.4: Time series of parameter estimates (continued)
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Figure A.4: Time series of parameter estimates (continued)
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