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1 Introduction

Global costs of weather-related disasters have increased sharply in recent decades. While this

trend increase is partly due to economic growth and exposure of physical capital (Pielke et

al., 2008), recent climate research links climate change to more frequent disasters (National

Academy of Sciences, 2016). Emissions abatement will only impact such losses decades down

the road and might not fully address the consequences for weather disasters. Hence, adapta-

tions to mitigate natural disaster risks, be it flooding from tropical cyclones or damage from

wildfires, need to play a major role going forward.

Since there is considerable uncertainty on the impact of global warming for the frequency of

disasters,1 adaptation naturally depends on households learning about these consequences. In

contrast to emissions abatement, which have been the main focus of research using integrated

assessment models (Nordhaus, 2017; Golosov, Hassler, Krusell, and Tsyvinski, 2014; Jensen

and Traeger, 2014; Cai and Lontzek, 2019; Barnett, Brock, and Hansen, 2020), such adaptation

strategies have thus far been relatively under-emphasized both in climate change research and

practice (Bouwer et al., 2007).

To address these issues, we begin by introducing learning and adaptation into a continuous-

time stochastic general-equilibrium model with disasters along the lines emphasized by Rietz

(1988), Barro (2006), and Pindyck and Wang (2013). Output is determined by an AK growth

function augmented with capital adjustment costs (e.g., Hayashi, 1982) that give rise to rents

for installed capital and the value of capital (Tobin’s average q). Disaster shocks following a

Poisson process destroy capital stock, affect equilibrium asset prices, and reduce the welfare

of households endowed with recursive utility (Epstein and Zin, 1989).

Mitigation of these disaster shocks is modeled via a combination of two adaptation tech-

nologies: (1.) adaptation spending at the firm level that reduces the exposure of a firm’s

capital to the disaster shock (e.g. sandbags and other temporary barriers to protect build-

ings) and (2.) spending at the aggregate level that requires collective action which reduces

the conditional damage of a disaster arrival and tail risk for all agents in the economy (e.g.,

an early warning system, infrastructure maintenance and preparedness, and other government

1According to a survey (Knutson et al., 2020), the most pessimistic climate model projects the frequency
of tropical cyclones in 2oc world to be 2.25 times higher than in the pre-industrial era. The most optimistic
model projects a slight decrease relative to pre-industrial levels. The median model projects a modest 13%
increase relative to pre-industrial.
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funded programs.)2

Our model generates the following key properties and predictions. First, while the planner’s

first-best solution features an optimal mix of spending on both adaptation technologies, firms

do not internalize the benefits of aggregate risk mitigation and underspend on total risk

mitigation in market economies. We prove that an optimal tax on capital to fund government

spending on reducing aggregate tail risks restores the first-best solution while still maintaining

a balanced budget.

Second, belief that the economy is in the bad state (B) is a key state variable driving

optimal adaptation and equilibrium outcomes. “Bad” news (an unexpected arrival) leads to a

discontinuous jump (worsening) of belief, as a disaster arrival is a discrete event also serving

as a discrete signal.3 Absent any arrivals, belief drifts gradually towards the good (G) state,

as no news is good news when it comes to arrival of disasters in our model.

Third, unexpected disaster arrivals have both direct effects (i.e. capital destruction) and

indirect effects due to learning that the world is riskier than anticipated. As a result, the effects

of disaster arrivals on economic growth are also time-varying and persistent. Additionally,

Tobin’s q falls and the stock market risk premium rises upon a disaster arrival. Without

the learning channel in our model, asset valuation multiples, e.g., Tobin’s q, would not move

upon disaster arrivals as predicted by Pindyck and Wang (2013). The disaster arrival effects

on growth, valuation, and risk premium are a major difference between our model and the

literature.4

We then quantify the importance of learning and adaptation for disaster risk mitigation

in the context of tropical cyclones, which include hurricanes, typhoons, cyclones, and tropical

storms,5 that are estimated to affect nearly 35% of the global population. Using panel data

covering 109 countries over the period of 1950-2010, we calibrate our model via simulation

to target moments pertaining to the macroeconomy (aggregate consumption, investment, and

output), to financial markets (the risk-free rate, equity risk premium and Tobin’s q), and to

the arrivals of tropical cyclones and adaptation (e.g., government flood control budgets). We

2See Lasage et.al. (2014), Muis et.al. (2015) and Fried (2023) for evidence on the value of flood control
adaptations.

3Our model generates time-varying disaster arrival rates via learning (also see e.g., Wachter and Zhu, 2019,
Colin-Dufresne, Johannes, and Lochstoer, 2016).

4See Hong, Karolyi, and Scheinkman (2020) for a review of recent findings on weather disasters and climate
risks including the impact of sea-level rise on coastal property prices. Beliefs of the risks are shown to play a
role (Bakkensen and Barrage, 2022).

5They are referred to as tropical storms or hurricanes in Atlantic, typhoons in the Pacific, and cyclones in
Indian Ocean.
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confirm findings in the literature that a typical disaster leads to 1% reduction in GDP growth

(Hsiang and Jina, 2014). We also present new findings that country-level asset prices (the

risk-free rate, Tobin’s q, and equity risk premium) also respond strongly to disaster arrivals,

thus allowing us to internally calibrate parameters governing the learning process.

The first finding of our quantitative analysis is that large learning effects are needed to

rationalize the data. The second finding is that the value of adaptation is much higher than

under the counterfactual no-learning environment. That is, a large part of the value of optimal

adaptation derives from uncertainty associated with learning about the climate state. The

third finding is that there is a significant gap between welfare in a competitive economy (with

only private adaptation) and welfare in the first-best economy, which is implementable in

a market economy with optimal capital taxes. Our quantitative conclusions are generally

robust to two changes to the model: (1) a generalized belief updating process that allows the

underlying state to switch between the good and bad states, and (2) different risk preferences.

Having established the importance of adaptation for mitigating disaster risks in a learning

environment, we then explain how learning and adaptation influence the social cost of carbon.

We consider a tractable extension, incorporating features from the social cost of carbon model

of Van den Bremer and Van der Ploeg (2021). Output depends on both capital and fossil

fuels. Using fossil fuels increases the stock of carbon in the atmosphere, which leads to lower

recovery rates given a disaster arrival, and hence results in more damages akin to integrated

assessment models which generally do no feature learning. Moreover, our model also features

uncertainty about the frequency of disasters, which our society learns about from disaster

arrivals, and then makes adaptation decisions in response.

We obtain the planner’s first-best solution for this economy. We then analyze the decen-

tralized competitive market model. Equilibrium outcomes depend on both the belief (about

how likely the economy is in the bad state) and the carbon stock. In order to address the

climate externality, we show that a combination of three taxes implements the first-best out-

come: (1.) a carbon tax on a firm’s fossil-fuel usage; (2.) a tax on firm investment and (3.)

a tax on capital to fund aggregate adaptation. The optimal carbon tax rate equals the social

cost of carbon in the first-best economy as in the literature. The tax rate on firm investment

is chosen to ensure that the equilibrium capital accumulation dynamics is the same as in the

first-best economy. This new tax margin is not in Golosov et al. (2014) as capital is a flexible

input choice in their model as opposed to a state variable in our model. Finally, the capital
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tax rate in our generalized model is similar to the one in our baseline model without carbon.

We use our calibration of the first-best solution to highlight the role of learning. As Daniel,

Litterman, and Wagner (2019) have observed, integrated assessment models without learning

invariably yield a social cost of carbon (and hence an optimal carbon tax) that is gradually

rising over time as a larger carbon stock is assumed to lead to more damages. In contrast,

the social cost of carbon, under our calibration, is declining at the beginning of the transition

period due to interaction of resolution of uncertainty and endogenous response of adaptation.

In general, the optimal fossil fuel tax and adaptation spending levels over time depend the

society’s prior belief and the speed of convergence of beliefs to a steady state.

Our work is related to insightful work by Bretschger and Vinogradova (2019), who model

optimal abatement with recurrent disasters. In contrast to ours, their model has no capital

adjustment costs, no learning, and does not distinguish between adaptation and fossil fuel

(abatement). As a result, in their model, the expected growth rate is constant over time as in

Pindyck and Wang (2013) and Tobin’s q always equals one, both of which are counter to the

evidence in our Section 6. Moreover, the social cost of carbon in their model does not depend

on the interaction of learning and adaptation.

2 Model

In this section, we develop a model of learning and adaptation to disaster risks in a market

economy. Time is continuous and the horizon is infinite. There is a continuum of identical

firms and households, both with a unit measure.

2.1 Firms’ and Households’ Optimization Problems

Firm production. A firm produces output proportional to its capital stock, Kt. That is,

its output is AKt , where A > 0 measures productivity. (This is an AK model).

Firm investment, capital accumulation, and arrival of jumps (disasters). Let It

denote firm investment. The firm’s capital stock Kt evolves as:

dKt = (It− − δKKt−) dt+ σKKt−dWK
t −Nt−Kt−(1− Z)dJt , (1)

where δK is the depreciation rate of capital. The second term captures continuous diffusive

shocks to capital, where WK
t is a standard Brownian motion and the parameter σK is the
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diffusion volatility. This term is the standard source of shocks for AK models in macroeco-

nomics and sometimes is interpreted as stochastic depreciation shocks. The last term in (1)

captures the loss to the firm’s capital from a stochastic arrival of a disaster.

The process Jt in (1) is a Poisson process where each jump arrives at a constant but

unobservable rate, which we denote by λ. We will return to discuss the details for the arrival

rate λ. There is no limit to the number of these jump shocks. If a jump does not arrive at t,

i.e., dJt = 0, the third term disappears. To emphasize the timing of potential jumps, we use

t− to denote the pre-jump time so that a discrete jump may or may not arrive at t. The Nt−

process is chosen by the firm to mitigate its exposures to disasters, which we introduce later.

Without reducing disaster exposures (which implies Nt− = 1), upon a disaster arrival at t

(dJt = 1), a stochastic fraction (1−Z) ∈ (0, 1) of the firm’s capital stock Kt− is permanently

destroyed at t and hence the surviving capital stock is Kt = ZKt−. (For example, if the firm

incurred no disaster exposure reduction spending at t− and a shock arrived at t destroying 15

percent of capital stock, we would have Z = 0.85.) Naturally, anticipating damages caused by

these disasters, the firm has incentives to ex-ante reduce its exposures to disaster shocks by

spending resources (e.g., sandbags to keep a building from flooding during a tropical cyclone.)

Let Ξ(Z) and ξ(Z) denote the cumulative distribution function (cdf) and probability den-

sity function (pdf) for the stochastic fraction of capital recovery Z, respectively, conditional

on a jump arrival. While the firm takes the distribution of Z as given, the society as a whole

can spend resources to influence the distribution of Z by making disasters less damaging to

the economy. We introduce the determinants of Ξ(Z) at the aggregate level in Section 2.4.

Reducing a firm’s disaster exposure (firm-level adaptation). Let Xe
t− denote the

firm’s adaptation spending to reduces its exposure to a disaster, where the superscript e refers

to exposure at t−. With this spending at t−, should a disaster arrive at t, the firm decreases

its capital loss from (1− Z)Kt− to Nt−(1− Z)Kt−, where Nt− ∈ [0, 1] depends on Xe
t−. The

effect of this spending on capital stock dynamics is captured by the Nt− term in (1). Let

xet− = Xe
t−/Kt− denote the firm’s scaled disaster exposure reduction spending.

To preserve our model’s homogeneity property, we assume that Nt− is a function of xet−:

Nt− = N(xet−) . (2)

Equations (1) and (2) imply that if we double Xe
t− and capital stock Kt− simultaneously, the

benefit from reducing disaster damages (in units of goods) also doubles. To see why, observe
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that Nt− = N(xet−) is unchanged with the simultaneous doubling of Xe
t− and Kt− but the

amount of loss reduced by adaptation, is doubled since Kt− has doubled.

We requireN ′(xe) ≤ 0 as adaptation spending reduces damages. Additionally, the marginal

effect of spending on reducing damages is decreasing in xe, which implies N ′′(xe) ≥ 0. Finally,

by definition, N(0) = 1, as no adaptation spending (xe = 0) no damage reduction.

Capital adjustment costs and firm’s objective. Following the q theory of investment

(Hayashi, 1982; Abel and Eberly, 1994), we assume that when investing Itdt, the firm incurs

capital adjustment costs, Φtdt. The firm’s dividend payout (profit), Yt, is then given by

Yt = AKt − (It + Φt)−Xe
t . (3)

Following Hayashi (1982), we specify the adjustment cost Φt as Φt = Φ(It, Kt), where

Φ(It, Kt) = ϕ(it)Kt , (4)

where it = It/Kt and ϕ(i) is increasing and convex. The firm chooses investment I and the

adaptation spending Xe to maximize its present value given by:6

E
(∫ ∞

0

Mt

M0

Ytdt

)
, (5)

where M is the equilibrium stochastic discount factor (SDF) that captures both the time

value and risk premium.7 The equilibrium SDF is the representative consumer’s equilibrium

marginal rate of substitution (MRS). Let Q0 denote firm value at t = 0, the solution for (5).8

Households’ preferences. We work with the recursive utility developed by Epstein and

Zin (1989) and formulated in continuous time by Duffie and Epstein (1992). The life-time

utility of our representative consumer’s recursive preferences is given by:

V0 = E
[∫ ∞

0

f(Ct, Vt)dt

]
, (6)

where f(C, V ) known as the normalized aggregator is given by

f(C, V ) =
ρ

1− ψ−1

C1−ψ−1 − ((1− γ)V )ω

((1− γ)V )ω−1 (7)

6Financial markets are perfectly competitive and complete. While the firm can hold financial positions
(e.g., DIS contracts in net zero supply), these financial hedging transactions generate zero NPV for the firm.
Therefore, financial hedging policies are indeterminate, a version of the Modigliani-Miller financing irrelevant
result. The firm can thus ignore financial contracts without loss of generality.

7The firm takes M as given when solving its problem and the M process is determined in equilibrium.
8Because installing capital is costly, installed capital earns rents in equilibrium so that Tobin’s average q,

the ratio between the firm’s value (Q0) and the replacement cost of capital (K0), exceeds one.
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and ω = (1 − ψ−1)/(1 − γ). Here ρ is the rate of time preference, ψ is the elasticity of

intertemporal substitution (EIS), γ is the coefficient of relative risk aversion. Unlike expected

utility, recursive preferences as defined by (6) and (7) disentangle risk aversion from the

EIS.9 To check the robustness of our analysis, we also analyze our model with external habit

formation proposed by Campbell and Cochrane (1999) in Subsection 7.7.

2.2 Bayesian Belief Updating about the Disaster Arrival Frequency

Next, we turn to the disaster arrival process. The arrival rate λ while constant is unobservable

to the agent.10 Therefore, an arrival of a disaster not only destroys capital stock, but also

serves as a signal from which households and firms update their beliefs about λ.

While the true disaster arrival rate λ is constant by assumption, households and firms do

not have complete information about the value of λ. What the households and firms know at

time 0 is that the true value of λ is either λG or λB with λB > λG. If the true value of λ is

λB rather than λG, capital stock is more likely to be hit by a disaster (i.e., a negative jump).

We refer to the low-arrival-rate and high-arrival-rate scenarios as the good (G) state and the

bad (B) state, respectively. Additionally, all agents are endowed with the same prior belief

π0− that the true value of λ is λB. In sum, all agents in our model have the same information

sets, share the same prior, and use the same Bayes rule to update beliefs.

Let πt denote the time-t posterior belief that λ = λB:

πt = Pt(λ = λB) , (8)

where Pt( · ) is the conditional probability at t. The expected disaster arrival rate at t, λt, is:

λt = Et(λ) = λ(πt) = λBπt + λG(1− πt) , (9)

which is a weighted average of λB and λG. A higher value of πt corresponds to a belief that

the economy is more likely in State B where the jump arrival rate is λB > λG.

What leads the agent’s belief to worsen (increasing π) is jump arrivals. What leads the

belief to revise favorably is no jump arrivals. In this sense, no-jump news is good news.

9If γ = ψ−1 so that ω = 1, we have the standard constant-relative-risk-aversion (CRRA) expected utility,
represented by the additively separable aggregator:

f(C, V ) =
ρC1−γ

1− γ
− ρ V .

10In Section OA of the Online Appendix, we generalize our model to a setting where the unobservable
disaster arrival rate λ is stochastic and follows a two-state continuous-time Markov chain.
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Mathematically, the agent updates his belief using the Bayes rule:11

dπt = σπ(πt−) (dJt − λt−dt) , (10)

where

σπ(π) =
π(1− π)(λB − λG)

λ(π)
=
π(1− π)(λB − λG)

λBπ + λG(1− π)
> 0 . (11)

Here, signals come from Jt. Note that πt and λt are both martingales which can be seen from

(10) as Et−[dJt] = λt−dt. When a disaster strikes at t, the belief immediately increases from

the pre-jump level πt− to πJ
t by σπ(πt−), where

πJ
t = πt− + σπ(πt−) =

πt− λB
λ(πt−)

> πt− . (12)

If there is no arrival (dJt = 0) over dt, the household becomes more optimistic. In this case,

dπt
dt

= µπ(πt−) = πt−(1− πt−)(λG − λB) , (13)

using µπ(πt−) = −σπ(πt−)λ(πt−) . Equation (13) is a logistic differential equation. Conditional

on no jump (dJv = 0) for v ∈ (s, t), we obtain the closed-form logistic function for πt:

πt =
πse

−(λB−λG)(t−s)

1 + πs(e−(λB−λG)(t−s) − 1)
. (14)

In Figure 1, we plot a simulated path for π starting from π0 = 0.08. It shows that absent a

jump arrival, belief becomes more optimistic and πt decreases deterministically between two

consecutive jumps following the logistic function given in (14). Once a jump arrives at t, the

belief worsens moving upward to πJ
t given in (12) by a discrete amount σπ(πt−) given in (11).

2.3 Competitive Market Structure and Equilibrium

Next, we turn to the competitive market economy. Financial markets are dynamically com-

plete. Without loss of generality, it is sufficient to assume that the following financial securities

exist at all time t: (i) a risk-free asset thats pays interest at the equilibrium rate of rt and

(ii) the aggregate equity market.12 To ease exposition, we use boldfaced letters to refer to

aggregate variables so as to differentiate from the corresponding firm-level variables.13

11See Theorem 19.6 in Liptser and Shiryaev (2001). A similar learning problem is in Dieckmann (2011).
12For markets to be dynamically complete, we also need actuarially fair diffusion and jump hedging contracts

(for each possible jump contingency) as in Pindyck and Wang (2013). The net demand is zero for all hedging
contracts. For expositional simplicity, we omit these hedging contracts and refer readers to Pindyck and Wang
(2013) for related detailed analysis.

13Because our model economy is populated with a continuum of identical households and firms, the average
of a micro-level variable equals the corresponding variable in the aggregate. For example, the average of It
equals the aggregate It. Similarly, the average of it equals the aggregate it. Our aggregation result is based
on the exact law of large numbers (Duffie and Sun, 2006).
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Figure 1: This figure simulates a path for disaster arrival times in Panel A and plots the
corresponding belief updating process in Panel B starting with π0 = 0.08. The belief decreases
deterministically in the absence of jumps but discretely increases upward upon a jump arrival.

Let {Qt} denote the equilibrium ex-dividend aggregate stock market value and {Dt} denote

the aggregate dividends, respectively. The cum-dividend return is then given by

dQt +Dt−dt

Qt−
= µQ(πt−)dt+ σKdWK

t +

(
QJ
t

Qt−
− 1

)
dJt , (15)

where µQ(π) is the expected stock market return (leaving aside the jump effect). We later

verify that the diffusion volatility of the stock market return equals σK , the same as the

diffusion volatility given in (1). Finally, the last term captures the effect of jumps on returns.

Competitive equilibrium. We define the recursive competitive equilibrium as follows:

(a.) Taking the equilibrium risk-free rate r and the equilibrium aggregate stock market return

process (15) as given, the representative household chooses consumption C and allocation to

the aggregate stock market Γ to maximize lifetime utility given by (6)-(7);14 (b.) Taking the

equilibrium SDF {Mt; t ≥ 0} as given, the representative firm chooses investment I and the

disaster exposure mitigation spending Xe to maximize its market value given in (5); (c.) The

interest rate r, the stock market return process (15), and the SDF {Mt; t ≥ 0} are consistent

with the households’ and firms’ optimal decisions and all markets clear in equilibrium.

14Since each household is infinitesimally small and has no impact on any aggregate variables, there is no
incentive to spend on mitigation. We provide additional discussions later in the paper.
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2.4 Source of Externality: Technology Reducing Tail Risk of the
Damage Distribution Ξ(Z) for All Firms

Next, we introduce another adaptation technology, which reduces the tail risk of the aggregate

disaster distribution Ξ(Z). In contrast to the first type of adaptation technology, which

operated at the firm level, this second type of adaptation technology operates at the aggregate

level and features an externality (a realistic aspect of adaptation) as its effectiveness depends

on collective contributions of all firms in aggregate (i.e. a public good).

We assume that the aggregate spending made at t− can curtail left-tail disaster (jump)

risks at t if a jump arrives at t.15 The idea is that changing the distribution of Z for all

firms is very costly and requires a spending that is at the order of a fraction of the aggregate

capital stock K. Let Xd
t− denote the aggregate spending on this distribution-tail-curtailing

technology, where the superscript d refers to the notion that this spending is to make the

distribution of fractional loss (1 − Z) less damaging. Let xdt− = Xd
t−/Kt− denote this scaled

aggregate adaptation spending. Since aggregate risk reduction is a public good, no firm has

incentives to spend on this new technology. This is the reason why markets fail.

Specifically, by spending on aggregate tail risk reduction, we change the distribution of

the post-jump fractional recovery Z from Ξ(Z) to Ξ(Z;xdt−). While simultaneously doubling

this type of aggregate adaptation spending Xd
t− and the aggregate capital stock Kt− does not

change the distribution Ξ(Z;xdt−), as the ratio xdt− = Xd
t−/Kt− remains unchanged, doing so

doubles the benefit of this public spending (i.e., the total reduction of damages) in levels as

the benefit is proportional to Kt−(1− Z) at the aggregate level.16

We have completed the description of our market economy model. Before solving it in

Section 4, we first analyze the planner’s problem. The first-best solution for the planner’s

model serves as an important benchmark for our analysis of the market economy.

3 Planner’s Problem and its First-Best Solution

The social planner chooses consumption C, investment I, and adaptation spendings Xd and

Xe to maximize the representative household’s utility given in (6)-(7) subject to the repre-

15Our assumption is motivated by the literature on flood control, where public adaptations reduce the tail
event of high inundation levels (Lasage et.al. (2014), Muis et.al. (2015)). Private adaptation is only effective
at low inundation levels.

16This is similar to the homogeneity assumption for disaster distribution (private adaptation) mitigation
spending Xe

t−.
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sentative firm’s production/capital accumulation technology, the adaptation technologies, and

the aggregate resource constraint: C+ I+Φ+Xd +Xe = AK.

To save on notation, we drop the subscript fb in this section until the end of this section

where we summarize the first-best solution.

Dynamic programming. Let V (K, π) denote the representative household’s value func-

tion. The Hamilton-Jacobi-Bellman (HJB) equation for the planner is:

0 = max
C, I,xe xd

f(C, V ) + (I− δKK)VK(K, π) + µπ(π)Vπ(K, π) +
1

2
σ2
KK

2VKK(K, π)

+λ(π)Exd [
V
(
KJ , πJ )− V (K, π)

]
, (16)

where πJ is the post-jump belief given in (12), KJ is the post-jump capital stock given by

KJ = (1−N(xe)(1− Z))K , (17)

µπ(π) is the expected change of belief absent jumps given in (13), λ(π) is the jump arrival

rate given in (9), and Exd
[ · ] is the expectation operator with respect to the pdf ξ(Z;xd) for

the recovery fraction Z for a given level adaptation spending xd to reduce aggregate risk.

The first term on the right side of (16) is the household’s normalized aggregator (Duffie

and Epstein, 1992); the second term captures how investment I affects V (K, π); the third

term reflects how belief updating (in the absence of jumps) impacts V (K, π); and the fourth

term captures the effect of capital-stock diffusion shocks on V (K, π). It is worth noting that

as the signals in our learning model are discrete (jump arrivals), there is no diffusion-induced

quadratic-variation term involving Vππ in the HJB equation (16).

Direct (value destroying) versus learning effects. Finally, the last term (on the second

line) of (16) captures the effect of jumps on the expected change in V (K, π). This term

captures rich economic forces and warrants additional explanations. When a jump arrives at

t (dJt = 1), capital falls from Kt− to (1 − Z)Kt− absent exposure mitigation spending. By

spending xet− to reduce the exposure, the planner reduces the capital loss from (1−Z)Kt− by

N(xet−)(1− Z)Kt−, so that the post-jump capital is KJ
t = (1−N(xet−)(1− Z))Kt− at t.

In sum, a jump triggers two effects on V (K, π). First, there is a direct capital destruction

effect. As a jump arrival lowers capital stock from Kt− to KJ
t = (1−N(xet−)(1−Z))Kt−, the

value function decreases from V (Kt−, πt−) to V (KJ
t , πt−) even if we ignore the agent’s belief

updating due to learning. Second, there is a learning (belief-updating) effect. As a jump
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arrival also cause the belief to increase from πt− to πJ
t given in (12), the agent becomes more

pessimistic causing the value function to further decrease from V (KJ
t , πt−) to V (KJ

t , π
J
t ).

These two effects reinforce each other over time leading to potentially significant losses.

The planner chooses consumption C, investment I, two types of adaptation spendings,

Xd and Xe, to maximize recursive utility given in (6)-(7) by setting the sum of the five

terms on the right side of (16) to zero, implied by the optimality argument underpinning the

HJB equation for recursive utility (see Duffie and Epstein, 1992). Because of the resource

constraint, it is sufficient to focus on I, Xd and Xe as control variables.

First-order conditions for investment and two types of adaptation spendings. The

first-order condition (FOC) for investment I is

(1 + ΦI(I,K))fC(C, V ) = VK(K, π) . (18)

The right side of (18), VK(K, π), is the marginal (utility) benefit of accumulating capital

stock. The left side of (18) is the marginal cost of accumulating capital, which is given by

the product of forgone marginal utility of consumption fC(C, V ) and the marginal cost of

accumulating capital, (1 + ΦI(I,K)). Because of capital adjustment costs, increasing K by

one unit requires incurring investment costs more than one unit, which explains the marginal

adjustment cost ΦI(I,K). Because of non-separability of preferences, fC(C, V ) depends on

not just consumption C but also the continuation utility V .

The FOC for the scaled aggregate tail risk reduction spending xd is

fC(C, V ) =
1

K
λ(π)

∫ 1

0

[
∂ξ(Z; xd)

∂xd
V
(
KJ , πJ )] dZ , (19)

if the solution is positive, xd > 0.17 The planner chooses xd to equate the marginal cost of

adaptation, which is the forgone marginal (utility) benefit of consumption fC(C, V ) given on

the left side of (19), with the marginal benefit of adaptation given on the right side of (19).18

By spending xd per unit of capital to make the distribution of Z less damaging, the planner

changes the pdf ξ(Z;xd) for the fractional capital recovery, Z, from ξ(Z; 0) to ξ(Z;xd).

Similarly, the FOC for the scaled aggregate disaster exposure reduction spending xe is

fC(C, V ) = −λ(π)N ′(xe)Exd [
(1− Z)VK

(
KJ , πJ )] , (20)

17Otherwise, xd = 0 as adaptation in reality cannot be negative. When do we see xd = 0? One scenario is
when the technology is very inefficient. In this case, the marginal benefit of spending on disaster distribution
mitigation spending is less than one, causing the planner to set xd = 0.

18The second-order condition (SOC) λ(π)
∫ 1

0

[
∂2ξ(Z;xd)
∂(xd)2

V
(
KJ , πJ )] dZ < 0 is satisfied.
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if the solution is strictly positive, xe > 0.19 That is, the planner optimally chooses xe to

equate the marginal benefit of reducing the disaster exposure with the marginal cost of doing

so. By spending xet− per unit of capital, the planner reduces the post-jump fractional capital

loss from (1− Z)Kt− to Kt− −KJ
t = N(xet−)(1− Z)Kt−.

Using the homogeneity property to simplify the solution. Our model has the fol-

lowing homogeneity property. If we double capital stock K, it is optimal for the planner to

simultaneously double its quantity choices: the two types of adaptation spendings Xd and

Xe, investment I, and consumption C at all time. As a result, the value function V (K, π) is

homogeneous with degree (1− γ) in K and given by:

V (K, π) =
1

1− γ
(b(π)K)1−γ , (21)

where b(π) is a welfare measure proportional to certainty equivalent wealth under first best to

be determined as part of the solution. Using the FOCs (18), (19), (20), substituting the value

function V (K, π) given in (21) into the HJB equation (16), and simplifying these equations,

we obtain the following four-equation ODE system for b(π), i(π), xd(π), and xe(π):

0 =
ρ

1− ψ−1

[(
b(π)

ρ(1 + ϕ′(i(π)))

)1−ψ

− 1

]
+ i(π)− δK − γσ2

K

2
+ µπ(π)

b′(π)

b(π)

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd(π)((1−N(xe(π))(1− Z))1−γ)− 1

 , (22)

b(π) = [A− i(π)− ϕ(i(π))− xd(π)− xe(π)]1/(1−ψ) [ρ(1 + ϕ′(i(π)))]
−ψ/(1−ψ)

, (23)

1

1 + ϕ′(i(π))
= λ(π)

[
b
(
πJ )
b(π)

]1−γ
N ′(xe(π))Exd(π)

[
(Z − 1)(1−N(xe(π))(1− Z))−γ

]
, (24)

1

1 + ϕ′(i(π))
=

λ(π)

1− γ

[
b
(
πJ )
b(π)

]1−γ ∫ 1

0

[
∂ξ(Z;xd(π))

∂xd
(1−N(xe(π))(1− Z))1−γ

]
dZ . (25)

The boundary conditions at π = 0 and π = 1 map to a generalized model of Pindyck

and Wang (2013), which allows for the two types of adaptation spendings introduced in our

model. Note that 1.) the π = 0 and π = 1 states are absorbing, in that the economy stays

permanently in state G and B respectively, as there is no learning at either state and 2.) i,

xd, xe, c, and welfare measure b are all constant at the π = 0 and π = 1 states. For brevity,

we omit the boundary conditions implied by (22)-(25) at π = 0 and π = 1.

Next, we summarize our model’s solution and provide a proof in Appendix A.1.

19Otherwise, xe = 0 since adaptation cannot be negative.
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Proposition 1 The first-best solution is given by the value function (21), where the welfare

measure bfb(π), ifb(π), x
d
fb(π), and xefb(π), solve the four-equation ODE system (22)-(25).

4 Competitive Markets Solution

While the planner’s (first-best) public adaptation spending is strictly positive, no firms have

incentives to reduce the aggregate risk distribution in a market economy. We show that the

market solution is equivalent to the planner’s solution for the case where only the disaster

exposure reduction technology is available.

4.1 Firm Adaptation and Investment

A firm maximizes its value given by (5) taking the following SDF Mt as given:

dMt

Mt−
= −rt−dt− γσKdWK

t + (ηt − 1) (dJt − λ(πt−)dt) . (26)

The first term on the right side of (26) states the equilibrium restriction that the drift of

dMt/Mt− equals −rt−dt (Duffie, 2001), where the equilibrium risk-free rate rt− is a function

of πt−, rt− = r(πt−). The second term on the right side of (26) is the diffusion martingale and

γσK is the equilibrium market price of diffusion risk as in Pindyck and Wang (2013), which

we verify later. As λ(πt−)dt = Et− (dJt), the last term in (26) is a jump martingale under

the physical measure. This implies that when a jump arrives at t, the SDF changes discretely

from Mt− to MJ
t by a multiple of endogenously determined market price of jump risk ηt:

MJ
t

Mt−
= ηt , (27)

which is a function of belief πt− and the realized value of Z: ηt = η(πt−;Z).
20

Applying the Ito’s Lemma to firm value Q(Kt, πt) = q(πt)Kt given in (5) and using (26),

we obtain the following HJB equation for Tobin’s q, q(π), (see Appendix B.1):

r(π)q(π) = max
i, xe, xd

A− i− ϕ(i)− xe − xd + (i− δK)q(π) + µπ(π)q
′(π)− γσ2

Kq(π)

+ λ(π)Exd [
η(π;Z)

(
q(πJ )(1−N(xe)(1− Z))− q(π)

)]
. (28)

The expectation operator in the last (jump) term (28) takes the aggregate disaster mitigation

spending in the economy, xd, as given. Additionally, there are three optimality conditions.

20We provide equilibrium solutions for r(πt−) and η(πt−;Z) in Section 5.3 and Subsections 4.3, respectively.
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First, (28) implies that xd = 0, as a firm is infinitesimal and hence reducing aggregate

disaster risk brings no benefit but only cost to itself.21 Second, unlike xd, (28) implies a rather

different FOC for the firm’s exposure reduction spending xe:

1 = −λ(π)q(πJ )N ′(xe)Exd

[(1− Z)η(π;Z)] . (29)

By spending a dollar at the margin on exposure risk mitigation, the firm reduces the destruc-

tion of its capital stock by −(1 − Z)N ′(xe) > 0 units should a jump arrive. Upon a jump

arrival, the gross percentage change of SDF is MJ
t /Mt− = η(πt−;Z) and the Tobin’s q jumps

from q(π) to q(πJ ). To obtain the marginal benefit of spending on exposure mitigation Xe,

we multiply the marginal reduction of capital stock destruction caused by a jump arrival,

−(1 − Z)N ′(xe) > 0, by λ(π)q(πJ )η(π;Z), and then integrate over all possible values of Z.

The resulting expected marginal value of mitigating the disaster exposure, given on the right

side of (29), equals one, the marginal cost of mitigating the exposure on the left side of (29).

The FOC for investment implied by (28) is:

q(π) = 1 + ϕ′(i(π)) , (30)

which is the standard investment optimality condition that equates the marginal q to the

marginal cost of investing 1 + ϕ′(i(π)). The homogeneity property implies that the average q

equals the marginal q as in Hayashi (1982).

4.2 Household Optimization

We show that the household’s value function, Jt = J(Wt, πt), is homogeneous with degree

1− γ in wealth W . That is, Jt = J(Wt, πt) takes the form of:

J(W,π) =
1

1− γ
(u(π)W )1−γ , (31)

where u(π) is a welfare measure that will be endogenously determined.

First, no household spends on disaster exposure or disaster distribution mitigation spend-

ings: Xd = 0 and Xe = 0, as no one has impact either the aggregate disaster distribution or

the aggregate disaster exposure. Second, we solve for the household’s optimal consumption C

21To be precise, since the firm’s adaptation spending xd has positive marginal cost but zero marginal benefit,
the FOC cannot hold with equality and the corner solution xd = 0 is optimal.
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and allocation to the risky asset Γ using the following HJB equation:

0 = max
C,Γ

f(C, J) + µπ(π)Jπ + λ(π)

∫ 1

0

[
J
(
WJ , πJ )− J(W,π)

]
ξ(Z;xd)dZ

+ [r(π)W + (µQ(π)− r(π))Γ− C] JW +
σ2
KΓ

2JWW

2
, (32)

where µQ(π) is defined in (15), πJ is the post-jump belief given in (12), and WJ is the

post-jump wealth given by

WJ
t = Wt− +

(
QJ
t

Qt−
− 1

)
Γt− . (33)

The aggregate stock market valuation Qt is proportional to the aggregate capital stock K:

Qt = q(πt)Kt where q(πt) is the Tobin’s q for K in equilibrium. When a jump arrives,

QJ
t

Qt−
=

q(πJ
t )K

J
t

q(πt−)Kt−
=

q(πJ
t )

q(πt−)
(1−N(xet−)(1− Z)) . (34)

Equation (34) states that aggregate stock market value changes from Qt− = q(πt−)Kt− to

QJ
t = q(πJ

t )K
J
t as a jump arrives for two reasons: 1.) capital stock decreases from Kt− to

KJ
t = [1−N(xet−)(1−Z)]Kt− by a fraction of N(xet−)(1−Z) and 2.) the aggregate Tobin’s q

changes from q(πt−) to q(π
J
t ), where π

J
t = πt−λB/λ(πt−) is given in (12). For brevity, we drop

the time subscripts when it does not cause confusion. That is, we write QJ /Q = QJ
t /Qt−.

Substituting (31) into the consumption FOC fC(C, J) = JW (W,π) and simplifying the

expression, we obtain the following consumption rule:

C(W,π) = ρψu(π)1−ψW . (35)

Consumption is linear in wealth with a π-dependent marginal propensity to consume. Sim-

plifying the household’s FOC for the market portfolio allocation Γ, we obtain:

Γ = −µQ(π)− r(π)

σ2
K

JW (W,π)

JWW (W,π)
+
λ(π)

σ2
K

Exd

[(
1− QJ

Q

)
JW
(
WJ , πJ )

JWW (W,π)

]
. (36)

The first term in (36) is the standard Merton’s mean-variance demand (absent jumps) and

the second term in (36) captures the intertemporal hedging demand as a jump arrival causes

both the household’s belief π and wealth W as well as the stock market Q to jump discretely.

4.3 Market Equilibrium

In equilibrium, the household invests all wealth in the stock market, Wt = Γt = Qt. We can

show that the ratio of the pre-jump and the post-jump SDF Mt in equilibrium, ηt, is given by

ηt =
MJ

t

Mt−
=

JW (QJ
t , π

J
t )

JW (Qt−, πt−)
. (37)
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The second equality in (37) states that ηt equals the ratio of the household’s post-jump

marginal value of wealth JW (QJ
t , π

J
t ) and the pre-jump marginal value of wealth JW (Qt−, πt−).

This is because in equilibrium both the household’s pre-jump and post-jump wealth are in the

stock market: Wt− = Qt− and WJ
t = QJ

t . Using the homogeneity property, we write ηt as:

ηt = η(πt;Z,x
e
t−) =

(
u(πJ

t )

u(πt−)

)1−γ (
q(πJ

t )

q(πt−)
(1−N(xet−)(1− Z))

)−γ

. (38)

We can further simplify the household’s HJB equation (32) as:

0 =
ψ−1ρψu(πt−)

1−ψ − ρ

1− ψ−1
+ µQ(πt−) + µπ(πt−)

u′(πt−)

u(πt−)
− γσ2

K

2
+
λ(πt−)

1− γ

[
Exd

(
ηt

QJ
t

Qt−

)
− 1

]
,(39)

where ηt is given in (38) and µQ(πt−) defined in (15) is given by22

µQ(πt−) = r(πt−) + γσ2
K + λ(πt−)Exd

t−

[
ηt

(
1− QJ

t

Qt−

)]
(40)

=
c(πt−)

q(πt−)
+ i(πt−)− δK + µπ(πt−)

q′(πt−)

q(πt−)
. (41)

In equilibrium, the household invests all wealth in the stock market, Wt = Γt = Qt.

Additionally, both the aggregate disaster exposure and distribution adaptation spendings in

a laissez-faire economy equal zero: Xe = Xd = 0.23 In sum, the solution is given by 1.) the

ODE (39) for u(π) and the FOCs (35)-(36) for households and 2.) the ODE (28) for q(π)

and the FOCs (29)-(30) for firms. We can also show that this solution of our market model is

the same as that of a planner’s problem, where the planner has no access to the adaptation

technology that curtails tail risk (xd(π) = 0). This planner’s problem is easier to solve. Rather

than solving for u(π) and q(π) in our market economy, it is equivalent to solve for b(π) and

optimal policies in the planner’s economy. Next, we summarize this equivalence result.

Proposition 2 The market solution is the same as the planner’s solution where there is no

adaptation technology to change the distribution of the recovery fraction Z (xd(π) = 0).

See Appendix B.3 for proof. Note that this proposition states that the Welfare Theorem

applies when there is no such adaptation technology.

22We use the FOC given in (36) and the equilibrium condition Γt = Wt to obtain (40). Substituting the
resource constraint c(π) = A− i(π)− ϕ(i(π))− xe(π) into the ODE (28) for q(π), we obtain (41).

23Since households contribute nothing to disaster exposure and distribution mitigation spendings, using the
law of large numbers, the aggregate exposure and distribution mitigation spendings are also zero.
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5 Optimal Taxation in Market Economy and Asset Prices

In this section, we show that introducing optimal capital taxation into our competitive market

economy of Section 2 changes the market-economy solution given in Section 4 to the one

implied by the planner’s first-best solution given in Section 3. We then derive the asset prices

that would hold under a given economy type.

5.1 Firm and Household Optimization under Capital Taxation

The government taxes the firm’s capital stock Kt at a rate of τt = xdfb,t, where xdfb,t is the

first-best mitigation spending to change the distribution of Z, obtained in Section 3. Then,

the government spends Xd
t = τtKt to reduce the tail risk of the disaster distribution.24 We

write the tax rate τt as a function of πt: τt = τ(πt) = xdfb,t = xdfb(πt).

Facing a capital tax rate of τ(πt) and taking the equilibrium SDF Mt as given, each firm

chooses {I, Xe, Xd} to maximize its value given in (5), where its payout, Yt, is given by25

Yt = (A− τ(πt))Kt − It − Φt −Xe
t . (42)

In effect, taxes lower productivity from A to A− τ(πt). Applying Ito’s Lemma to firm value

given in (5) and using (26), we obtain the following HJB equation for Tobin’s average q, q(πt):

r(π)q(π) = max
i, xe

A− τ(π)− i− ϕ(i)− xe + (i(π)− δK)q(π) + µπ(π)q
′(π)− γσ2

Kq(π)

+ λ(π)Exd [
η(π;Z,xe)

(
q(πJ )(1−N(xe)(1− Z))− q(π)

)]
. (43)

Note that the tax rate τ(π) appears in (43). The FOCs for i and xe are given in (29) and (30),

respectively, the same as in the no-tax model of Section 4.26 Next, we prove that incorporating

optimal taxes into the competitive-market economy yields the first-best solution.

5.2 Optimal Capital Taxation Restores First-Best

In this section, we show that the household’s value function in the competitive economy with

optimal taxes is the same as the value function under the first-best. As the household’s value

function in a market economy depends on wealthW while the planner’s value function depends

on K, we use the equilibrium result Wt = q(πt)Kt in the market economy with taxation to

24Equivalently the government can impose via a tax on sales AKt at the firm level.
25The firm does not spend on disaster distribution mitigation (Xd = 0), as there is no benefit.
26For brevity, we refer readers to Section 4 for the household’s problem, as it is in effect the same as in the

previous section.
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write the household’s value function as J(Wt, πt) = J(q(πt)Kt, πt). The value functions in the

two economies are equal, V (Kt, πt) = J(Wt, πt), if and only if b(π) in the first-best economy

equals the product u(π)q(π) in the competitive economy with taxes.

Specifically, we show the following results: (1.) the first-order conditions for i(π) and xe(π)

in the competitive economy with an optimal tax rate set at the xdfb are the same as those in the

planner’s economy; (2.) the implied ODE for u(π)q(π) in the competitive market economy is

the same as the ODE (22) for b(π) in the planner’s economy; (3.) all the boundary conditions

at π = 0 and π = 1 in the two economies are the same. Below is a proof.

First, combining the equilibrium aggregate investment FOC, q(π) = 1+ϕ′(i(π)), implied by

(30) with the optimal scaled consumption rule c(π) = ρψu(π)1−ψq(π) = (ρq(π))ψ [u(π)q(π)]1−ψ,

implied by (35) and W = q(π)K, we obtain the following expression for consumption:

c(π) = [ρ(1 + ϕ′(i(π)))]
ψ
[u(π)q(π)]1−ψ . (44)

Using the goods-market clearing condition c(π) = A− τ(π)− i(π)− ϕ(i(π))− xe(π) and

b(π) = u(π)q(π), we obtain the following expression:

b(π) = [A− τ(π)− i(π)− ϕ(i(π))− xe(π)]1/(1−ψ) [ρ(1 + ϕ′(i(π)))]
−ψ/(1−ψ)

, (45)

which is the same as the investment FOC, given in (23), for the planner’s problem, provided

that the capital tax rate equals xdfb(π): τ(π) = xdfb(π). Note that (45) summarizes both the

consumer’s and the firm’s optimization FOCs in the market economy with optimal taxes.

Second, substituting (38) for η into the FOC (29) for disaster exposure mitigation xe in

the competitive market economy, we obtain

1 = −λ(π)q(πJ )N ′(xe)Exd

[
(1− Z)

(
u(πJ )

u(π)

)1−γ (
q(πJ )

q(π)
(1−N(xe)(1− Z))

)−γ
]
. (46)

Using the investment FOC q(π) = 1 + ϕ′(i(π)), the equilibrium conditions (q(π) = q(π) and

i(π) = i(π)), and the b(π) = u(π)q(π) result for the two economies, we obtain

1 = −N ′(xe(π))λ(π)(1 + ϕ′(i(π)))

[
b(πJ )

b(π)

]1−γ
Exd(π)

[
(1− Z)(1−N(xe(π))(1− Z))−γ

]
, (47)

which is the same as the planner’s FOC (24) for xe. So far, we have verified that the FOCs

for investment and exposure mitigation spending in the two economies are the same.
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Third, substituting (41) into (39) and using the consumption rule c(π) = ρψu(π)1−ψq(π)

implied by the FOC (35), we may rewrite the ODE (39) for the household’s u(π) as

0 =
ρψu(π)1−ψ − ρ

1− ψ−1
+ i(π)− δK + µπ(π)

(
u′(π)

u(π)
+
q′(π)

q(π)

)
− γσ2

K

2

+
λ(π)

1− γ

(u (πJ )q (πJ )
u(π)q(π)

)1−γ

Exd

((1−N(xe)(1− Z))1−γ)− 1

 . (48)

We obtain (48) by using η(π;Z,xe) given in (38) and QJ /Q given in (34).

Fourth, using the conjecture b(π) = u(π)q(π) = u(π)(1 + ϕ′(i(π))), we may simplify the

ODE (48) and obtain the following ODE for b(π) = u(π)q(π):

0 =
ρ

1− ψ−1

[[
b(π)

ρ(1 + ϕ′(i(π)))

]1−ψ
− 1

]
+ i(π)− δK + µπ(π)

b′(π)

b(π)
− γσ2

K

2

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd

((1−N(xe)(1− Z))1−γ)− 1

 , (49)

which is the same as the ODE (22) for b(π) in the first-best economy.27 In sum, we have

verified that setting the capital tax at τ(π) = xdfb(π) in the market economy yields the same

allocation as in the first-best economy. Next we summarize this result.

Proposition 3 Setting the capital tax rate τ(πt) to xdfb(πt) for all firms and then spending all

tax proceeds each period to mitigate the tail risk of the disaster distribution: τ(πt) = xdfb(πt),

the competitive-market economy attains the first-best resource allocation.

It is worth noting that the homogeneity property of our model allows us to simplify our

analysis by writing the optimal tax rate on capital as a function that only depends on belief,

independent of a firm’s capital stock: τ(π) = xdfb(π). However, the market decentralization

argument that allows the economy to attain the first-best (after the planner imposes the

optimal capital tax to fund the aggregate public adaptation spending) does not depend on

the homogeneity property. We provide our intuition in two steps.

First, once the planner taxes all firms possibly using nonlinear tax rates on their capital

stocks and uses these tax proceeds to fund the first-best aggregate risk mitigation spending

Xd
t , the planner has fixed the market failure. Second, after the externality is addressed and

the aggregate climate risk is properly mitigated, it is then optimal for both the representative

27Also applying the same arguments to the boundaries at π = 0 and π = 1, we can show that the two
economies have the same FOCs at the boundaries and, moreover, b(0) = u(0)q(0) and b(1) = u(1)q(1).
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consumer and producer to choose the first-best consumption and capital investment decisions,

respectively.

5.3 Asset Prices

Next, we report and discuss the equilibrium asset pricing implications.

Proposition 4 Tobin’s average q for the aggregate capital stock is q(π) = 1+ϕ′(i(π)), where

i(π) is the optimal investment-capital ratio. The equilibrium risk-free rate, r(π), is given by

r(π) = ρ+ ψ−1(i(π)− δK)−
γ(ψ−1 + 1)σ2

K

2
−
[
(1− ψ−1)

(
u′(π)

u(π)
+

q′(π)

q(π)

)
− q′(π)

q(π)

]
µπ(π)

− λ(π)
[
Exd

(η(π;Z,xe))− 1
]
− λ(π)

ψ−1 − γ

1− γ

[
1− Exd

(
QJ

Q
η(π;Z,xe)

)]
, (50)

where η(π;Z,xe) is given in (38) and QJ /Q is the jump-triggered (gross) percentage change

of the stock market value given in (34). The stock market risk premium, rp(π), is

rp(π) = γσ2
K − λ(π)Exd

[
(η(π;Z,xe)− 1)

(
QJ

Q
− 1

)]
. (51)

These results apply to both the market economy with taxation and the one without.

Out of the six terms in (50), the first three terms are the contributing factors to the

equilibrium interest rate in AK models with diffusion shocks. The fourth term captures the

effect of belief updating. The fifth term describes how the jump-induced expected change

of the marginal value of wealth (MJ /M) contributes to the risk-free rate. The sixth term

captures the additional effect of jumps on the equilibrium risk-free rate due to the household’s

recursive (non-separable) Epstein-Zin preferences rather than expected utility.28

There are two terms for the market risk premium rp given in (51). In addition to the

diffusion risk premium (the first term), there is a jump risk premium (the second term),

which equals the expectation over the product of the (net) percentage change of marginal

value of wealth (M), (η(π;Z,xe) − 1), and the (net) percentage change of the stock market

value given in (34), both of which are caused by jump arrivals. A downward jump causes

the household’s marginal utility to increase (η(π;Z,xe) = MJ /M ≥ 1). As the stock market

valuation decreases upon a jump arrival, (QJ < Q), the jump risk premium is positive.

28To be precise, for recursive utility, fCV ̸= 0 and therefore the SDF Mt is not additively separable, which
makes jumps to have an additional intertemporal effect. For expected utility (γ = ψ−1), this term disappears.
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6 Application to Tropical Cyclones

We apply our model of learning and adaptation for weather disasters to tropical cyclones

and leverage our asset pricing results to highlight the learning channel. Our largest sample

contains annual observations for the real GDP per capita growth rate and cyclone landfalls

across 109 countries from 1960 to 2010 with 5,410 county-year observations in total.29

6.1 Frequencies of Landfalls and Spendings on Flood Control

Let Landfalli,t be an indicator variable that equals one if and only if country i experienced

at least one cyclone landfall that is “tropical storm” or higher in year t. Table 1 reports the

sample statistics of cyclone landfalls for each of the four regions.30 Globally, a country on

average experiences a tropical cyclone landfall once every 7.4 years, as the disaster arrival rate

is 0.135 per annum (in Table 1.)

Table 1: Summary statistics of cyclone landfalls

Region (1) Total # of (2) Total # of (3) Freq. of landfalls = (2)/(1):
country-year obs. cyclone landfall obs. Disaster arrival rate estimate

North Atlantic 1,587 229 0.144
West Pacific 638 326 0.511
North India 719 75 0.104
South Atlantic 2,466 99 0.040

Global 5,410 729 0.135

The primary adaptation for countries in our sample is government flood control budgets.

Unlike the landfall data, such data is not readily available. We hand collected data on gov-

ernment flood control budgets based on public sources by focusing on countries in the West

Pacific (including Oceania), which according to Table 1 faces the most frequent tropical cy-

clone landfalls. We are able to obtain through various sources 72 country-year observations of

government flood control budgets for a cross section of eight countries.31 For this cross section,

the average annual government flood control budget is around 0.1% (10 basis points) of the

country’s capital stock with a standard deviation of 0.05% across country-years observations.

29These are the same set of countries as in Hsiang and Jina (2014) excluding Taiwan for which there is no
GDP data from the World Bank Development Indicator.

30We assign the 109 countries into four regions: North Atlantic (including North America, the Caribbean,
and West Europe) West Pacific (including Oceania), North India (including North India, Middle East, North
Africa, and Central Europe), and South Atlantic (including Latin America and Sub-Saharan Africa).

31West Pacific countries include China, Japan, Korea, and the Philippines. Oceania countries include
Australia, Indonesia, New Zealand and Papua New Guinea.
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There are also private spendings as well on flood control according to field studies, which typ-

ically place these private spendings somewhat around 0.03% – 0.05% of capital stock, below

the 0.1% of capital stock for public spendings (Lasage et.al., 2014).

To provide some perspectives on these small expenditures on flood control, over this sample

period, the output-to-capital ratio is about 30% (with a standard deviation of 17%). The

investment-capital ratio is 7% (with a standard deviation of 4%) and the consumption-capital

ratio is 22% (with a standard deviation of 13%). The small expenditures on adaptation

presumably reflect a belief that the consequences of global warming are relatively mild but

they may significantly increase should the frequencies of arrivals increase and the society

quickly updates beliefs towards the most pessimistic model projections.

6.2 Damage from Landfalls and Asset Market Reactions

Importantly, we retrieve two key panel regression estimates on the response of growth and

asset prices to the arrival of cyclones that highlight the role of learning in financial markets.

How policies (e.g., investment and consumption) and asset prices respond to a cyclone arrival

depend on beliefs π which change over time (Propositions 1 and 4). A landfall is bad news

leading to more pessimistic beliefs for future growth. Asset prices also fall in anticipation of

more frequent disasters in the future. In Pindyck and Wang (2013), which is a special case of

our no-learning model, disasters lead to a destruction in capital stock K but the growth rate

is identically and independently distributed at all time. That is, even after a disaster arrival

destroys a fraction of the country’s capital stock, there is no impact at all on either growth

projection or asset prices (e.g., Tobin’s q, the risk-free rate, and the risk premium) going

forward in Pindyck and Wang (2013). This is because there is no learning in their model.

Table 2: Baseline model estimation results

Dependent variable: Growth rate of real GDP per capita

(1) (2) (3) (4) (5)
North Atlantic West Pacific North India South Atlantic Global

Landfall -0.0061* -0.0029* -0.0088*** -0.0275*** -0.0077***
(-2.01) (-1.94) (-3.35) (-3.69) (-4.29)

Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Time trends Yes Yes Yes Yes Yes

We now show that landfalls damage growth and asset prices respond adversely to news of

cyclone arrivals, consistent with our model in which learning plays a key role. Table 2 reports
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the estimates of the impact of a major cyclone making landfall on growth for each region

and also the world. The dependent variable is the per capita growth rate. The independent

variable is the Landfall indicator. The panel regression has country fixed effects, year fixed

effects, and country-specific quadratic time trends. A landfall disaster reduces the expected

annual growth rate by 0.61%, 0.29%, 0.88%, and 2.75% in North Atlantic, West Pacific, North

India, and South Atlantic respectively, and by 0.77% in the global sample. Since the average

annual growth rate in our sample is 1.95% (with a standard deviation of 5.09%), a landfall,

which lowers the annual growth rate by 0.77% on average, is quite economically damaging.32

Since the data availability for financial variables is quite limited before 1990, and to be

consistent with our samples using real GDP growth data, the sample period of macro-financial

variables for the cyclone landfall analysis is from 1990 to 2010. Even then, we only have a

subset of countries that have the relevant financial variables. Panel A of Table 3 reports the

unconditional moments for asset prices pooling all these remaining countries. These moments

including a risk-free rate of 1.43% and an equity risk premium of 5.26%, a volatility of equity

market returns of 26.57%,, and a Tobin’s average q of 2.49.

Table 3: Summary statistics of asset prices

Panel A provides the summary statistics of the financial variables used in our study. RealRF
is real interest rate (nominal interest rate minus inflation rate). ERP is equity risk premium
(stock market return net of nominal interest rate). TobinQ is Tobin’s average q. VolRET is
volatility of annual stock market return. Annual risk-free nominal interest rate, inflation rate,
and stock market return data at the country level are from the IMF and the World Bank.
Panel B reports regression of these asset-pricing moments on cyclone landfalls. Estimates for
RealRF and ERP are in percentages. t-statistics with clustered robust standard errors are
shown in parentheses below the estimates. The period for the cyclone sample is 1990-2010.

Panel A: Summary Statistics

Mean Standard deviation Median 10 percentile 90 percentile

RealRF (%) 1.43 4.32 1.32 -4.40 6.91
ERP (%) 5.26 24.26 5.61 -27.47 37.36
TobinQ 2.49 4.84 1.51 0.60 3.65
VolRET (%) 26.57 8.26 26.38 15.24 37.52

Panel B: Asset Market Reaction to Landfalls

RealRF ERP TobinQ

Landfall -0.090** 0.307** -0.101**
(-2.34) (2.48) (-2.11)

32Our estimates are consistent with those reported in Hsiang and Jina (2014), who estimate the marginal
effect of windspeed on GDP growth damage.
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As before with real GDP growth in Table 2, we use a Panel regression model in Panel B of

Table 3 to measure the impact of a cyclone landfall on a country’s real interest rate (RealRF),

equity risk premium (ERP), or Tobin’s average q (TobinQ) by using country and time fixed

effects. The panel regression model regresses financial variables on an indicator for cyclone

landfall (Landfall) for the whole sample. A cyclone landfall on average reduces Tobin’s average

q by 0.10, lower the real interest rate by 0.09%, and increases equity risk premium by 0.31%

per annum. These estimates are inconsistent with models of disasters absent learning, e.g.,

Pindyck and Wang (2013), as we discussed earlier.

7 Quantitative Analysis

In this section, we first calibrate our model and then conduct a quantitative analysis.

7.1 Distributional and Functional Form Specifications

As in Barro (2006) and Pindyck and Wang (2013), we assume that the distribution function

of the recovery fraction Z upon a cyclone arrival is given by a power law over Z ∈ (0, 1 ):

Ξ(Z;xd) = Zβ(xd) , (52)

where β(xd) is the exponent function that depends on scaled disaster distribution mitigation

xd. To ensure that our model is well defined, we require β(xd) > γ − 1.

Conditional on a jump arrival, the expected fractional capital loss for a firm is given by

ℓ(π) = N(xe)(1− Exd

(Z)) =
N(xe)

β(xd) + 1
. (53)

The larger the value of β( · ), the smaller the expected fractional loss Exd
(1−Z) even absent

the firm’s disaster exposure mitigation xe. To capture the benefit of public mitigation, we

assume that β(xd) is increasing in xd: β′(xd) > 0. The benefit of public disaster distribution

mitigation xd is to increase the capital stock recovery (upon the arrival of a disaster) in the

sense of first-order stochastic dominance in that Ξ(Z;xd) decreases with xd.

Let gt = g(πt) denote a firm’s expected growth rate including the jump effect. The

homogeneity property implies that growth is independent of the aggregate capital K and

g(π) = i(π)− δK − λ(π)ℓ(π) = i(π)− δK − λ(π)N(xe)

β(xd) + 1
. (54)
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We specify the firm’s exposure mitigation technology N(xe) as follows:

N(xe) = 1− (xe)ζ , (55)

where 0 < ζ < 1. That is, the more exposure mitigation spending xe the smaller the (frac-

tional) damage, i.e., the lower the level of N(xe). Additionally, the marginal benefit of xe

on reducing damages diminishes. We use the following linear specification for β(xd) which

governs the public disaster distribution mitigation technology:

β(xd) = β0 + βxx
d , (56)

with β0 ≥ max{γ − 1, 0} and βx > 0. The coefficient β0 is the exponent for the distribution

function of the fractional recovery Z in the absence of mitigation. The coefficient βx is a

key parameter and measures the efficiency of the aggregate disaster distribution mitigation

technology. Finally, we use a quadratic adjustment cost function (e.g., Hayashi, 1982):

ϕ(i) =
θi2

2
, (57)

where the parameter θ measures how costly it is to adjust capital.

7.2 Calibration and Parameter Choices

Table 4: Parameter Values

Parameters Symbol Value

disaster jump arrival rate in State G λG 0.1
disaster (jump) arrival rate in State B λB 0.8
prior of being in State B π0 0.08
power law exponent absent adaptation β0 39
distribution adaptation technology parameter βx 1, 800
exposure adaptation technology parameter ζ 0.4

elasticity of intertemporal substitution ψ 1.5
time rate of preference ρ 5%
productivity parameter A 27%
quadratic adjustment cost parameter θ 17
coefficient of relative risk aversion γ 8
capital diffusion volatility σK 8%
depreciation rate of capital δK 6%

All parameter values, whenever applicable, are continuously compounded and annualized.
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Our model has 13 parameters. We calibrate these parameters by targeting 13 moments

described in Section 6. The calibrated values of these parameters are given in Table 4.

The new parameters in our analyses are the three for the learning process (λG, λB, and π0)

and the other three for the adaptation technologies (β0, βx and ζ). In order to determine these

six parameters, we use six moments from our panel data on the frequencies of tropical cyclone

landfalls, their impact on GDP growth and asset prices (risk-free rate, equity risk premium,

and Tobin’s average q), and the levels of private and public adaptation spendings that we

obtained and reported in Section 6, i.e., around 0.1% and 0.04% of capital stock, respectively.

To rationalize the empirical findings, we need quite a large spread in λG and λB, consistent

with the considerable uncertainty in climate science projections (Knutson et al., 2020).

A number of the macro-finance moments we are targeting, such as the risk-free rate rate

and equity risk premium (Panel A of Table 3), are similar to those targeted in the asset pricing

literature. Hence, our preference parameters, e.g., the EIS ψ and coefficient of relative risk

aversion γ, are similar to those used in this literature. For instance, Bansal and Yaron (2004)

show that setting the coefficient of relative risk aversion γ to a value between 7 to 10 and

an EIS ψ to be larger than one is necessary to match the equity risk premium and the risk-

free rate. Similarly, the parameters for the production part of our model, e.g., productivity,

capital adjustment costs, and the capital depreciation rate, are chosen to match the aggregate

output and production targets discussed in Section 6.1. The calibrated values turn out to be

close to those in the literature (e.g., Eberly, Rebelo, and Vincent, 2012), suggesting that our

calibration strategy yields sensibly robust parameter values for our quantitative analysis.

Next, we use these parameters to analyze a few economies. In Figure 2, we plot and

compare the solutions for three economies: 1.) the planner’s first-best solution (solid blue

lines), 2.) the market economy (dashed red lines) and 3.) the planner’s solution with no

learning (dotted black lines). In the next two subsections, we do two pair-wise comparisons.

7.3 Comparing First-Best with Competitive-Market Solutions

In this subsection, we compare the first-best with competitive-market solutions. A key feature

that both economies share is learning. In Panel A of Figure 2, we see that public mitigation

xd (solid blue line) rapidly increases with the disaster arrival rate λ in the first-best econ-

omy. In contrast, the market solution features no public mitigation spending (dashed red

line) regardless of beliefs due to externalities. Panel B shows that private mitigation xe in
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both economies increases with λ. Since there is no xd in the competitive economy, private

adaptation has to take up the slack. But the total adaptation spendings given by the sum,

xe + xd, are lower in the market economy than in the first-best economy, meaning that the

combined risk mitigation is still under-provided in the laissez-faire market economy.
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Figure 2: This figure compare the solutions for three economies: 1.) the planner’s first-best
solution (solid blue lines), 2.) the market economy (dashed red lines), and 3.) the planner’s
solution with no learning (dotted black lines). The first two economies feature Bayesian
learning. The parameters values are given in Table 4.

Now we turn to Figure 3. We define WTP ζp(π) and ζm(π) as the fraction of capital the

market economy with no adaptation is willing to give up to transition to the planner’s first-

best economy and the market economy with just private adaptation, respectively.33 Panel A

shows that both WTPs increase with belief π.34 The WTP wedge ζp(π) − ζm(π) measures

33To calculate the WTP measures, ζp(π) and ζm(π), we use the representative household’s value functions
(welfare measures proportional to the certainty equivalent wealth) for the three economies. Formally, we use

ζp(π) = 1− b(π)

bfb(π)
and ζm(π) = 1− b(π)

b̂(π)
> 0 ,

where bfb, b̂, and b are the welfare measures (proportional to certainty equivalent wealth) in the (planner’s) first-
best economy, the market economy (with access to both adaptation technologies but only private mitigation
technology will be adapted in equilibrium), and the market economy (with access to neither adaptation
technology), respectively.

34We can decompose the WTPs into the risk premium and timing premium components by building on the
idea and extending the procedure proposed in Epstein, Farhi, and Strzalecki (2014). We show that for our
calibrated baseline, while the timing premium is also important, the risk premium component is the major
contributor to the total WTP.
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the additional welfare gain of having access to the tail-risk public adaptation technology in

a market economy. This additional welfare gain increases with λ and is quite substantial for

the real-world relevant range of values for λ.
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Figure 3: This figure compare the solutions for three economies: 1.) the planner’s first-best
economy (solid blue lines), 2.) the market economy (dashed red lines), and 3.) the planner’s
economy with no learning (dotted black lines). The first two economies feature Bayesian
learning. The parameters values are given in Table 4.

In Panel B of Figure 3, we show that the conditional damage ℓ(λ) in both the first-best and

market economies decrease with λ. Additionally, the conditional damage ℓ(λ) in the first-best

economy is lower than in the market economy. Moreover, as λ increases, the wedge between

ℓ(λ) in the two economies widens. Because of larger risk mitigation and smaller conditional

damage ℓ(λ) in the first-best economy than in the market economy, the expected growth rate

g(λ) is higher in the first-best economy than the market economy (Panel C). This is because

the society is more prepared in the first-best economy than in the market economy. The

growth-rate difference in the two economies increases with λ and is quantitatively large for

the real-world relevant range of λ.

In Panels D, E, and F of Figure 3, we show that in both the first-best and market economies,
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Tobin’s average q decreases as belief worsens, however, the interest rate and risk premium are

nonlinear and non-monotonic in λ. This is because while the mean growth prospect gets worse

as λ increases, uncertainty is the highest for the intermediate range of λ. As both the mean

and higher-order-moment effects are important in the first-best and market economies, the

impact of λ on the interest rate and risk premium are nonlinear and non-monotonic.

7.4 Learning versus No-Learning Counterfactual

In this subsection, we assess the value of learning by comparing the solution of our first-best

model with learning (of Section 3) with the solution of a counterfactual planner’s model with

no learning. In the counterfactual no-learning model, we assume that the disaster arrival rate

is fixed at a given value of λ and then solve the model. We find that adaptation spendings (in

Panels A and B of Figure 2) for π ∈ (0, 1) are larger in our learning model (solid blue lines)

than in our counterfactual no-learning model (dotted black lines). As the π = 0 state (where

λ = λG = 0.1) and the π = 1 state (where λ = λB = 0.8) are absorbing, the solutions for the

first-best learning model (solid blue lines) and the planner’s no-learning model (dotted black

lines) are the same at π = 0 and π = 1 states.That is, adaptation spendings are the highest in

the learning model where there is uncertainty over climate states (intermediate values of λ).

Investment in our learning model is also lower than in our no-learning counterfactual model

(Panel C), but consumption differences in the two economies are limited (Panel D).

7.5 Comparative Statics

In Online Appendix OC, we conduct comparative static analyses with respect to four key

parameters: the EIS (ψ), the disaster arrival rate in state B (λB), the time rate of preference

(ρ), and the coefficient of relative risk aversion (γ). Our main mitigation findings are robust

across these four parameter values. The main difference lies in valuation ratios, e.g., the price-

dividend ratio.35 Finally, in the last subsection of Online Appendix OC (Subsection OC.5),

we provide a welfare decomposition using our model to further reinforce the importance of

learning in determining welfare.

35When EIS ψ = 1, the price-dividend ratio, q/c, equals 1/ρ, the inverse of the time rate of preference, for
all levels of π, which is known in the asset-pricing literature, e.g., Wachter (2013). When ψ is greater (less)
than one, this q/c ratio decreases (increases) with π. That is, equity valuation ratios react negatively to bad
(e.g., disaster arrival) news consistent with the reason why the long-run risk literature chooses ψ > 1.
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7.6 Generalized Learning Model with Stochastic Arrival Rate λt

The disaster arrival rate in our baseline model (Section 2), while unobservable, is constant. In

Appendix OA, we generalize our baseline model to allow for the unobservable disaster arrival

rate to be stochastic, by using a two-state Markov Chain (see, e.g., Wachter and Zhu, 2019).

We show that our main quantitative results and conclusions continue to hold in the generalized

model of Appendix OA where the transition rates between states G and B are small.

7.7 External Habit Model

In Appendix OB, we replace the Epstein-Zin recursive utility used in our baseline model of

Section 2 with another widely-used risk preference—the external habit model proposed by

Campbell and Cochrane (1999). For brevity, we focus on the planner’s solution. We calibrate

our external habit model by targeting the same moments as we do for our baseline model

whenever feasible. The quantitative implications on mitigation spendings and welfare in our

external habit model are similar to those in our baseline model with Epstein-Zin preferences.

However, the two models generate opposite predictions on how investment i and Tobin’s

average q respond as belief becomes more pessimistic (π increases). While both i and q

increase with π in our habit model, the opposite holds in our baseline Epstein-Zin model. The

intuition follows from our discussion regarding comparative statics with respect to ψ.36

8 Implications for the Social Cost of Carbon

In this section, we generalize our baseline model (Section 2) to draw out the implications for

the social cost of carbon (SCC) as the society learns about the severity of climate disasters and

adapts to the challenges it faces. We show how the planner can attain the first-best outcome

by optimally using taxes on carbon, investments and capital. We calibrate our generalized

model so as to provide quantitative predictions for projections of SCC over time.

8.1 Generalized Model: Fossil Fuels, Carbon Stock, and Disasters

First, we introduce fossil-fuel-usage caused emissions, Ht, as an additional factor of production

at the micro level, so that a firm’s output equals AKα
t H

1−α
t , with 0 < α < 1, as in Golosov

36From the long-run risk literature and the comparative static analysis for our baseline Epstein-Zin model
with respect to ψ in Section OC of the Online Appendix, we know that an EIS (lower than one) causes the
valuation ratios, e.g., the price-dividend ratio, to go up in response to bad news. Our habit model inherits
this property, which explains the key differences between the two utility models.
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et al. (2014) and Van den Bremer and Van der Ploeg (2021). The stock of (aggregate)

atmospheric carbon (in Gitatons) that exceeds the pre-industrial atmospheric carbon stock

associated with man-made emissions, which we denote by St, evolves:

dSt = (Ht− − δSSt−)dt+ σSSt−dWS
t , (58)

where Ht is the aggregate fossil fuel emissions by all firms: Ht =
∫
Hν
t dν, δS is the decaying

rate of the atmospheric carbon stock, WS
t is a standard Brownian motion, and the parameter

σS is the volatility of atmospheric carbon. Let ϑ denote the correlation coefficient between

WS
t and the standard Brownian motion WK

t . We measure both the firm-level H and the

aggregate H in units of carbon and therefore also measure S in units of carbon (e.g., tons of

carbon). The aggregate resource condition is:

AKα
t H

1−α
t = Ct + It + Φ(It,Kt) +Xd

t +Xe
t + pHHt , (59)

where pH denotes the price of carbon per ton (tc) in units of consumption good, the numeraire.

To model the damage of the aggregate carbon stock St, we assume that the distribution of

the post-jump fractional recovery Z depends on St. We assume that the damage of weather

disaster shocks while uncertain increases in expectation with St. As in our baseline model,

firms and households learn from disaster arrivals over time regarding the severity of climate

risk. To maintain the homogeneity structure of our model, we assume that the distribution

function of the post-jump fractional recovery Z, Ξ, depends on both aggregate adaptation

spending, xt−, and the scaled carbon stock, st− = St−/Kt−, i.e., Ξ(Z;x
d
t−, st−). The higher

the carbon stock st−, the lower the expected recovery caused by a disaster.

The carbon-to-productive-capital ratio s = S/K evolves as follows:

dst = µs(πt−, st−)dt+ st−
[
σSdWS

t − σKdWK
t +Nt−(1− Z)dJt

]
, (60)

where µs(πt−, st−) is given by

µs(πt−, st−) = ht− −
(
it− − δK + δS − σ2

K + ϑσKσS
)
st− . (61)

8.2 First-best Solution

Let V (K,S, π) denote the representative household’s value function. The planner chooses

{C, I, xe xd,H} to solve the following HJB equation:

0 = max f(C, V ) + (I− δKK)VK + µπ(π)Vπ + (H− δSS)VS +
σ2
KK

2VKK

2
+
σ2
SS

2VSS
2

+ ϑσKσSKSVKS + λ(π)Exd [
V
(
(1−N(xe)(1− Z))K,S, πJ )− V (K,S, π)

]
, (62)
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subject to the aggregate resource additivity condition (59).

As in Cai and Lontzek (2019) and Van den Bremer and Van der Ploeg (2021), we define

the social cost of carbon (SCC), as the marginal disutility/disvalue of emitting an additional

ton of carbon divided by the marginal utility of consumption:

mt ≡ −VS(Kt,St, πt)

fC(Ct, Vt)
. (63)

We may use the SCC, mt defined in (63), to express the FOC for the fossil fuel usage Ht as:

(1− α)AKα
t H

−α
t = pH +mt . (64)

Rewriting (64), we obtain the following expression for the scaled fossil fuel usage hfbt :

hfbt =

(
(1− α)A

pH +mt

)1/α

. (65)

We show that the value function V is homogeneous with degree (1− γ) in K and S:

V (K,S, π) =
1

1− γ
(b(π, s)K)1−γ , (66)

where s = S/K and b(π, s) is a measure of welfare proportional to the household’s certainty

equivalent wealth under optimality. Using the first-best policies and b(πt, st), we obtain the

following expression for the SCC measure mt defined in (63) in the first-best economy:37

m(πt, st) = −bs(πt, st)
ρ

(
c(π, st)

b(πt, st)

)ψ−1

. (67)

In Online Appendix OD.1, we solve the model characterized by the PDE system for b(π, s).

8.3 Market Economy with Optimal Taxes Attains First-best

In this subsection, we show that the planner attains the first-best outcome via optimal taxation

and a lump-sum transfer. Let τxt , τ
h
t , and τ

i
t denote the tax rates on a firm’s capital Kt, fossil-

fuel usage and investment, respectively. Let Lt denote the lump-sum transfer to the firm,

which only depends on the aggregate variables. A firm’s payout at t, Yt, is then given by

Yt = AKα
t H

1−α
t −

(
It + Φt +Xe

t+X
d
t + pHHt

)
−
[
τxt Kt + τht Ht + τ it

(
It + Φt

) ]
+ Lt . (68)

Taking the equilibrium SDF Mt and the three tax rates as given, each firm maximizes its

value given in (5) by choosing {I, Xe, Xd, H}.
37Using the first-best solution, we can calculate the first-best c(π, s) by using the resource constraint:

c(π, s) = Ah(π, s)1−α − i(π, s)− ϕ(i(π, s))− xd(π, s)− xe(π, s)− pHh(π, s) .
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The key idea here is that the planner can attain the first-best by implementing Pigouvian

taxes (for investment and fossil fuel usage) in our dynamic model in addition to taxing capital

to fund aggregate adaptation spending (as in the baseline model of Section 2).

The FOC for a firm’s fossil fuel usage, h, is: (1−α)Ah(π, s)−α = pH + τh, where τh is the

Pigouvian tax on fossil fuel usage h. By setting τht = m(πt, st) at all t, where m(π, s) is given

in (67), we obtain the same FOC for ht as in the planner’s problem. By taxing fossil fuel at

SCC under the first-best m(π, s), the planner (locally) addresses the externality caused by

carbon emissions. However, this is not enough.

This is because our model features capital adjustment costs, which means capital stock K

is a state variable rather than a choice variable as in Golosov et al. (2014). This has important

implications on the optimal tax plan. To attain the first-best, the planner needs to ensure

that both carbon stock S and capital stock K to follow the same trajectory as in the first-best

economy. Hence, in addition to using a fossil fuel tax τh to manage carbon accumulation, the

planner also needs to use an investment tax τ i to manage capital stock accumulation.

Specifically, facing an investment tax τ i, a firm chooses i to satisfy the FOC:

q(π, s) = (1 + ϕ′(i(π, s))) (1 + τ i) . (69)

By optimally choosing τ i, the planner increases a firm’s marginal cost of investing from

(1 + ϕ′(i(π, s))) as in the standard q theory to the term on the right side of (69), which

includes the additional marginal cost to the society τ i (1 + ϕ′(i(π, s))). Taking the investment

tax as given, the firm optimally equates its marginal q (marginal benefit of investing) on the

left side of (69) with its cum-tax marginal cost of investing on the right side.

Similar to the analysis for the market economy under government intervention for our

baseline model (Section 5), we show that it is optimal for the planner to tax capital at the

rate τxt that equals the aggregate adaptation spending, i.e., τxt = xdt at all time t and use the

aggregate proceeds from capital taxes to fund the aggregate public adaptation spending Xd
t .

Finally, we show that the lump-sum transfer associated with optimal Pigouvian taxes is

given by Lt = m(πt, st)H
fb
t + τ i(πt, st)

(
Ifbt +Φfb

t

)
, where τ it = τ i(πt, st) and

τ i(πt, st) =
stbs(πt, st)

b(πt, st)− stbs(πt, st)
. (70)

To ensure that the market economy tracks the capital stock accumulation in the first-best

economy, the planner links the optimal tax rate to the welfare measure b(πt, st) and its deriva-

tive in the first-best economy, as (70) shows.
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To further deepen our understanding of the mechanism, we substitute the lump-sum trans-

fer expression for Lt into a firm’s payout process (68) and obtain:

Yt = AKα
t H

1−α
t −

(
It + Φt +Xe

t+X
d
t + pHHt

)
−
[
xdfb(πt, st)Kt +m(πt, st)(Ht −Hfb

t ) + τ i(πt, st)
(
It + Φt − (Ifbt +Φfb

t )
) ]
. (71)

Recall that Xd = 0, as a firm is infinitesimal and reducing aggregate disaster risk brings no

benefit but only cost to itself as in our baseline model. Now we have expressed a firm’s fossil

fuel tax payment as the carbon tax rate m(πt, st) multiplied by a firm’s excess fossil fuel usage

relative to the first-best level, Ht −Hfb
t . This means when Ht −Hfb

t < 0, the firm receives a

subsidy. Similarly, a firm’s investment tax payment equals the investment tax rate τ i(πt, st)

multiplied by its total investment costs exceeding the first-best level,
(
It +Φt −

(
Ifbt +Φfb

t

))
.

This is because the planner only optimally penalizes a firm’s deviation from the first-best.

Our carbon and investment taxes are Pigouvian taxes in general equilibrium.

Finally, by combining the investment and carbon taxes with the optimal capital tax τx

to fund the aggregate adaptation spending, the planner fully addresses all externalities and

attains the first-best. Next, we summarize the three tax rates chosen by the planner to attain

the first-best in a market economy. Online Appendix OD provides a proof.

Proposition 5 The planner attains the first-best outcome in a market economy by setting:

1.) τxt = xdfb(πt, st), where xdfb(πt, st) is the scaled first-best public (distribution) adaptation;

2.) τht = m(πt, st), where m(πt, st) is SCC in the first-best economy given in (67); and 3.)

τ it = τ i(πt, st), where τ
i(πt, st) is given in (70).

8.4 Calibration

Next, we calibrate our generalized model with carbon stock. The solution of this generalized

model boils down to a PDE system even after we use the homogeneity property to simplify our

analysis. After incorporating fossil fuel and carbon dynamics, our model has 20 parameters

(Table 5) while our baseline model of Section 7 has 13 parameters (Table 4).

First, we assume that the β function that describes the disaster damage distribution de-

pends on not only Xd and K but also S in our carbon model as follows:

β(xd, s) = β0 + βxx
d − βss , (72)

where xd = Xd/K, s = S/K, and βx and βs are positive parameters. Compared with (56),

we now incorporate the effect of carbon stock s on disaster damages, which is captured by
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βs. Generalizing our calibration procedure for the baseline model, we determine the eight

Table 5: Parameter Values for Generalized Model with Carbon

Parameters Symbol Value

disaster (jump) arrival rate in State G λG 0.1
disaster (jump) arrival rate in State B λB 0.8
prior of being in State B π0 0.08
power law exponent absent adaptation β0 39
distribution adaptation technology parameter βx 2, 500
exposure adaptation technology parameter ζ 0.25

damage parameter from atmospheric carbon βs 10, 000
carbon decaying rate δS 3%
return-to-scale parameter α 0.96
volatility of carbon stock growth σS 7.5%
price of carbon per ton (tC) pH 540
initial value of pHs pHs0 13.6%

elasticity of intertemporal substitution ψ 1.5
time rate of preference ρ 5%
productivity parameter for Cobb-Douglas function A 43%
quadratic adjustment cost parameter θ 17
coefficient of relative risk aversion γ 8
capital diffusion volatility σK 8%
depreciation rate of capital δK 6%

correlation between capital and carbon stocks ϑ 0

All parameter values, whenever applicable, are continuously compounded and annualized.

parameters in the first panel of Table 5 (λG, λB, β0, βx, βs, ζ, δS, and π0) by targeting the

GDP growth, asset prices (risk-free rate, equity risk premium, and Tobin’s average q), the

levels of private and public adaptation spendings (reported in Section 6), and the steady state

of s at 0.05%.

The four parameters in the second Panel of Table 5 (α, σS, pH , and s0) are related to

fossil fuels and carbon stock dynamics in our model and damage from carbon stock. We use

the parameter values from the carbon economics literature for these parameters (see e.g., Van

den Bremer and Van der Ploeg, 2021).

For the three preference parameters (the EIS ψ, risk aversion γ, and the time rate of

preference ρ) and the four production parameters (productivity A, the quadratic adjustment

cost θ, capital diffusion volatility σK , and capital depreciation rate δK) reported in the last

Panel of Table 5, we use the same values as those in Table 4 for our baseline model without

36



carbon (of Section 2). Finally, we set the correlation coefficient between capital shocks and

carbon stock shocks to zero: ϑ = 0.

8.5 Social Cost of Carbon (SCC) Projections

In this subsection, we discuss the SCC projections over time using the first-best solution. It

is helpful to first plot how SCC m(π, s) varies with the two state variables: π and s.

SCC as a function of belief π and s. Panel A of Figure 4 shows that SCC, m(π, s0), is

increasing and concave in π. As the world becomes riskier, i.e., as π increases, SCC increases

as we expected. However, the rate at which SCC increases, mπ(π, s0), decreases with π. This

is because the society endogenously increases adaptation spendings xd and xe as π increases

(Section 7). Panel B of Figure 4, shows that SCC, m(π, s0), is increasing in s.
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B. SCC: m(π0, s)

Figure 4: Panel A plots SCC m(π, s) as a function of π fixing s = s0. Panel B plots SCC as
a function of s fixing π = π0. The parameters values are in Table 5.

Next, we simulate our model (from year 0) and analyze predicted SCC projections. To

highlight the role of learning, we first consider the no-learning counterfactual environment.

SCC projections under no-learning counterfactual. In Figure 5, we see that both the

mean and quantiles of SCC increase over time. This is because carbon accumulates over time

in expectation and SCC increases with (scaled) carbon stock s. The qualitative prediction of

our model is similar to other recent integrated assessment models (Jensen and Traeger 2014;

Cai and Lontzek, 2019). However, unlike these models with no adaptation margins, active

adaptations in our model reduce the slope of SCC projections over time.
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Figure 5: The mean (Panel A) and quantiles (Panel B) of social cost of carbon (SCC) over
time in the counterfactual no-learning environment. The parameters values are in Table 5.
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Figure 6: The mean (Panel A) and quantiles (Panel B) of social cost of carbon (SCC) over
time in our learning model.The parameters values are in Table 5.

SCC projections in our learning model. Figure 6 shows that the mean of SCC pro-

jections in our learning environment first decreases over time, bottoms out around ten years,

and then increases over time (Panel A). This prediction fundamentally differs from those in

no-learning counterfactual environments, such as the one we just analyzed in Figure 5 and

models in the literature, which have no learning.

Why in a learning model does SCC first decreases before increases over time? This is

due to the interaction of (1) belief dynamics and (2) the endogenous adaptation response to

changing beliefs. First, belief π, being a martingale, spreads out stochastically over time and
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eventually settles either at state G or at state B with probability one.38 Second, because

of endogenous adaptation response to changing beliefs, SCC is concave in π, which we just

discussed using Panel A of Figure 4. Therefore, due to Jensen’s inequality, SCC first decreases

over time in our learning model.

Quantitatively, our calibrated calculation shows that the learning effect dominates the

standard carbon emission effect for the first ten or so years and the standard carbon stock effect

dominates for the later years, generating the inverse-hump shaped SCC transition dynamics.39

The inter-quantile SCC range (for a given pair of quantiles) in our learning model is much

wider than the range in the no-learning counterfactual (comparing Figures 5 and 6).

In sum, we show that the interaction of learning and adaptation generates new qualitative

predictions and large quantitative effects for SCC projections.

9 Conclusion

We develop a model of adaptation to mitigate weather disaster risks arising from global warm-

ing. Optimal adaptation — a mix of private efforts and public spending — depends on learning

about the consequences of global warming for disaster arrivals. The planner’s solution can be

implemented via a combination of taxes on capital and carbon. We apply our model to major

tropical cyclones and calibrate the learning process using empirical findings on the response

of asset prices to disaster arrivals. There are a number of implications, including the de-

pendence of social-cost-of-carbon projections on the interaction of uncertainty resolution and

endogenous response of adaptation. To obtain these results, we made simplifying assumptions

on adaptation technologies. Relaxing them, which we leave for future research, would yield

additional insights for policymakers.

38This result follows from the martingale convergence theorem (Liptser and Shiryaev, 2001).
39Note that SCC projections are also about 20% lower in our learning model than in the no-learning

counterfactual model (Figure 5). This is consistent with our model’s prediction that it is more valuable to
adapt when agents learn from disaster arrivals (Section 7.4)).
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Appendices

A The First-best Economy in Section 3

A.1 Planner’s Resource Allocation

Substituting the value function (21) into the FOC (18) for investment, the FOC (19) for the aggregate

disaster distribution adaptation spending, and the FOC (20) for the aggregate disaster exposure

adaptation spending, we obtain:

b(π) = c(π)1/(1−ψ)
[
ρ(1 + ϕ′(i(π)))

]−ψ/(1−ψ)
, (A.1)

ρc(π)−ψ
−1
b(π)ψ

−1−1 =
λ(π)

1− γ

(
b(πJ )

b(π)

)1−γ ∫ 1

0

[
∂ξ(Z;xd)

∂xd
(1−N(xe(π))(1− Z))1−γ

]
dZ , (A.2)

ρc(π)−ψ
−1
b(π)ψ

−1−1 = λ(π)

[
b
(
πJ
)

b(π)

]1−γ
N ′(xe(π))Exd(π)

[
(Z − 1)(1−N(xe(π))(1− Z))−γ

]
,

(A.3)

where the post-jump πJ is given in (12) as a function of the pre-jump π. Substituting the resource

constraint, c(π) = A− i(π)−ϕ(i(π))−xd(π)−xe(π), into (A.1), we obtain (23). Substituting (A.1)

into (A.3), we obtain (24) and substituting (A.1) into (A.2), we obtain (25). Finally, substituting

the value function (21) and the FOC (23) into the HJB equation (16), we obtain the ODE (22).

In sum, we now have fully characterized the model solution summarized in Proposition 1.

A.2 Asset Pricing Implications in the First-best Economy

Duffie and Epstein (1992) show that the SDF {Mt : t ≥ 0} implied by the planner’s solution is:

Mt = exp

[∫ t

0
fV (Cs, Vs) ds

]
fC(Ct, Vt) . (A.4)

Using the FOC for investment (18), the value function (21), and the resource constraint, we obtain:

fC(C, V ) =
1

1 + ϕ′(i(π))
b(π)1−γK−γ =

1

q(π)
b(π)1−γK−γ (A.5)

and

fV (C, V ) =
ρ

1− ψ−1

[
(1− ω)C1−ψ−1

((1− γ))ω−1 V −ω − (1− γ)

]
= −ϵ(π) , (A.6)

where

ϵ(π) = −ρ(1− γ)

1− ψ−1

[(
c(π)

b(π)

)1−ψ−1 (
ψ−1 − γ

1− γ

)
− 1

]
. (A.7)

Using the equilibrium relation between b(π) and c(π), we simplify (A.7) as:

ϵ(π) = ρ+
(
ψ−1 − γ

) [
i(π)− δK −

γσ2K
2

+ µπ(π)
b′(π)

b(π)

]

+
(
ψ−1 − γ

) λ(π)
1− γ

(b (πJ )
b(π)

)1−γ

Exd [
(1−N(xe)(1− Z))1−γ

]
− 1

 , (A.8)
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where the post-jump belief πJ given in (12) is a function of the pre-jump belief π. For expected
utility where ψ = 1/γ, we have ϵ(π) = ρ. Using Ito’s Lemma and the optimal allocation, we obtain

dMt

Mt−
= −ϵ(π)dt− γ

[
(i(π)− δK)dt+ σKdWK

t

]
+
γ(γ + 1)

2
σ2Kdt+

(
(1− γ)

b′(π)

b(π)
− q′(π)

q(π)

)
µπ(π)dt

+

 q(π)

q(πJ )

(
b
(
πJ
)

b(π)

)1−γ

(1−N(xe)(1− Z))−γ − 1

 dJt . (A.9)

As the expected percentage change of Mt equals −rt per unit of time (Duffie, 2001), we obtain

the following expression for the equilibrium interest rate:

r(π) = ρ+ ψ−1(i(π)− δK)−
γ(ψ−1 + 1)σ2K

2
−
[
(1− ψ−1)

b′(π)

b(π)
− q′(π)

q(π)

]
µπ(π)

− λ(π)

 q(π)

q(πJ )

(
b
(
πJ
)

b(π)

)1−γ

Exd
((1−N(xe)(1− Z))−γ)− 1


− λ(π)

ψ−1 − γ

1− γ

1−

(
b
(
πJ
)

b(π)

)1−γ

Exd
((1−N(xe)(1− Z))1−γ)

 . (A.10)

Recall thatDt = Ct andMt−Dt−dt+d(MtQt) is a martingale under the physical measure (Duffie,

2001). Applying Ito’s Lemma to Mt−Dt−dt+ d(MtQt) and setting its drift to zero, we obtain

c(π)

q(π)
= ρ− (1− ψ−1)

[
i(π)− δK −

γσ2K
2

+ µπ(π)
b′(π)

b(π)

]

+ λ(π)
1− ψ−1

1− γ

1−(b (πJ )
b(π)

)1−γ

Exd
[1−N(xe)(1− Z)]1−γ

 . (A.11)

We obtain the aggregate Tobin’s average q from (A.11). For the special case with ψ = 1 and any risk

aversion γ > 0, the dividend yield (and equivalently the consumption-wealth ratio) is c(π)/q(π) = ρ.

B Market Equilibrium Solution in Section 4

B.1 Firm Value Maximization

First, using Ito’s Lemma, we obtain the following dynamics for Qt = Q(Kt, πt):

dQt =

(
(I − δKK)QK +

1

2
σ2KK

2QKK + µπ(π)Qπ

)
dt+ σKKQKdWK

t

+
(
Q((1−N(xe)(1− Z))K,πJ )−Q(K,π)

)
dJt . (B.12)

No arbitrage implies that the drift of Mt−(AKt− − It− − Φ(It−,Kt−)−Xe
t− −Xd

t−)dt+ d (MtQt) is

zero under the physical measure (Duffie, 2001). Applying Ito’s Lemma to this martingale, we obtain

0 = max
I,xe,xd

M(AK − I − Φ(I,K)− xeK − xdK) +M
(
(I − δKK)QK +

1

2
σ2KK

2QKK + µπ(π)Qπ

)
+Q

[
−r(π)− λ(π)

(
Exd

(η(π;Z,xe))− 1
)]

M−Mγσ2KKQK

+ λ(π)Exd [
η(π;Z,xe)Q((1−N(xe)(1− Z))K,πJ )−Q(K,π)

]
M . (B.13)
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And then by using the homogeneity property Q(K,π) = q(π)K, we obtain the simplified HJB

equation (28). Simplifying the FOC for the exposure mitigation spending implied by (B.13), we

obtain (29). Similarly, simplifying the investment FOC implied by (B.13), we obtain (30).

B.2 Household’s Optimization Problem

By following the cum-dividend return of the aggregate asset market given in (15), the representative

household accumulates wealth as:40

dWt = r(πt−)Wt−dt+ (µQ(πt−)− r)Γt−dt+ σKΓt−dWK
t − Ct−dt+

(
QJ
t

Qt−
− 1

)
Γt−dJt . (B.14)

By using the Wt process given in (B.14), we obtain the HJB equation (32) for the household’s

value function. The FOCs for consumption C and the market portfolio allocation Γ are given by

fC(C, J) = JW (W,π) , (B.15)

σ2KΓJWW (W,π) = −(µQ(π)− r(π))JW (W,π) + λ(π)Exd

[(
1− QJ

Q

)
JW

(
WJ , πJ

)]
. (B.16)

Subsituting (31) into (B.15), we obtain the optimal consumption rule given by (35). Simplifying the

FOC for Γ given by (B.16), we obtain (36).

B.3 Market Equilibrium

First, the firm’s (scaled) disaster exposure adaptation spending is positive and equals the aggregate

exposure mitigation spending: xe = xe > 0. Second, in equilibrium, the household invests all wealth

in the market portfolio and holds no risk-free asset, Γ =W and W = Q. Simplifying the FOCs, (35)

and (36), and using the value function (31), we obtain:

c(π) = ρψu(π)1−ψq(π) , (B.17)

µQ(π) = r(π) + γσ2K + λ(π)

[
Exd

(η(π;Z,xe))− q(πJ )

q(π)
Exd

((1−N(xe)(1− Z))η(π;Z,xe))

]
.

(B.18)

Then substituting (31) into the HJB equation (32), we obtain (39). Using these equilibrium condi-

tions, we simplify the HJB equation (32) as follows:

0 =
1

1− ψ−1

(
c(π)

q(π)
− ρ

)
+

(
µQ(π)− c(π)

q(π)

)
−
γσ2K
2

+ µπ(π)
u′(π)

u(π)

+
λ(π)

1− γ

[
q(πJ )

q(π)
Exd

((1−N(xe)(1− Z)η(π;Z,xe)))− 1

]
. (B.19)

40The first four terms in (B.14) are standard as in the classic portfolio-choice problem with no insurance
or disasters. The last term is the loss of the household’s wealth from her portfolio’s exposure to the market
portfolio. (We leave out the disaster insurance demand as they net out to zero in equilibrium and do not
change the equilibrium analysis.) Pindyck and Wang (2013) provide a detailed description of their dynamically
complete markets setting (with various diffusion and stage-contingent actuarially fair jump hedging contracts.).
Our dynamically complete markets setting builds on Pindyck and Wang (2013).
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Third, by substituting c(π) = A− i(π)− ϕ(i(π))− xe(π) into (28), we obtain

0 =
c(π)

q(π)
− r(π) + i(π)− δK + µπ(π)

q′(π)

q(π)
− γσ2K

− λ(π)

[
Exd

(η(π;Z,xe))− q(πJ )

q(π)
Exd

((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.20)

By using the homogeneity property and comparing (15) and (B.12), we obtain

µQ(π) =
c(π)

q(π)
+ i(π)− δK + µπ(π)

q′(π)

q(π)
. (B.21)

Then substituting (B.21) into (B.19), we obtain

c(π)

q(π)
= ρ− (1− ψ−1)

[
i(π)− δK −

γσ2K
2

+ µπ(π)

(
u′(π)

u(π)
+

q′(π)

q(π)

)]
+λ(π)

(
1− ψ−1

1− γ

)[
1− q(πJ )

q(π)
Exd

((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.22)

Substituting (B.22) into (B.20), we obtain the following expression for the equilibrium risk-free rate:

r(π) = ρ+ ψ−1(i(π)− δK)−
γ(ψ−1 + 1)σ2K

2
−
[
(1− ψ−1)

(
u′(π)

u(π)
+

q′(π)

q(π)

)
− q′(π)

q(π)

]
µπ(π)

− λ(π)
[
Exd

(η(π;Z,xe))− 1
]

− λ(π)

[
ψ−1 − γ

1− γ

(
1− q(πJ )

q(π)
Exd

((1−N(xe)(1− Z))η(π;Z,xe))

)]
. (B.23)

Using (15) and (B.18), we obtain the following expression for the market risk premium rp(π):

rp(π) = µQ(π) + λ(π)

(
QJ

Q
− 1

)
− r(π) = γσ2K − λ(π)Exd

[
(η(π;Z,xe)− 1)

(
QJ

Q
− 1

)]
, (B.24)

which implies (51).

In sum, we have derived the equilibrium resource allocations and the asset pricing implications

summarized in Proposition 2 and Proposition 4.
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Online Appendices

OA Model with Stochastic Disaster Arrival Rates

The disaster arrival rate in our baseline model of Section 2, while unobservable, is constant.
In this section, we generalize the baseline model to allow for the unobservable disaster arrival
rate to be stochastic.1 We assume that the disaster arrival rate follows a two-state continuous-
time Markov chain taking two possible values, λG in state G and λB > λG in state B. Let
φG denote the transition rate from state G to state B and φB denote the transition rate from
state B to state G. That is, over a small time period ∆t, the transition probability from the
G state to the B state is φG∆t and similarly the transition probability from the B state to
the G state is φB∆t. Our baseline unobservable constant λ model of Section 2 is a special
case of this model with φG = φB = 0.

OA.1 Model

As in our baseline model, let πt denote the conditional probability that the economy is in
state B. The belief process {πt} evolves as:

dπt = Et−[dπt] + σπ(πt−) (dJt − λt−dt) , (OA.1)

where σπ(π) is given by (11) and λt− = λBπt− + λG(1 − πt−) is the expected disaster arrival
rate at t− given in (9). Note that the second term is a martingale by construction. Since the
economy follows a two-state Markov chain, the expected change of belief is given by

Et−[dπt] = (φG − (φB + φG)πt−)dt . (OA.2)

We can thus rewrite (OA.1) as follows:

dπt = (φG − (φB + φG)πt−)dt+ σπ(πt−) (dJt − λt−dt) . (OA.3)

Equation (OA.3) implies that πt in our generalized model is no longer a martingale. This is in
sharp contrast with our baseline model (with constant arrival rate), where belief πt given in
(10) is a martingale. Rewriting the drift term in (OA.3), we see that the expected change of
belief πt in our generalized learning model is given by the difference between φG(1−πt−), which
is the transition rate out of state G, φG, multiplied by 1 − πt−, the conditional probability
in state G, and φBπt, which is the transition rate out of state B, φB, multiplied by πt−, the
conditional probability in state B.2

We note that the jump martingale term (the second term in (OA.3)) in our generalized
model is the same as in the belief updating process (10) for our baseline model. As a result,
when a disaster strikes at t, the belief immediately increases from the pre-jump level πt−
to πt = πJ by σπ(πt−), where π

J is given by (12), the same as in our baseline model with
unobservable constant arrival rate λ.

1Ghaderi, Kilic, and Seo (2022) also develops a Bayesian learning model that builds on Wachter (2013).
2As a result, when πt = 0 (in the G state for sure), the drift of belief πt is exactly φG, the arrival rate from

the G to the B state. Similarly by symmetry, when πt = 1 (in the B state for sure), the drift is exactly −φB .

O-1



Taking these results together, absent jump arrivals (i.e., dJt = 0), we obtain the following
expression for the rate at which belief changes, µ̂π(πt−) = dπt/dt:

µ̂π(π) = (φG − (φB + φG)π)− π(1− π)(λB − λG) . (OA.4)

Generalizing the unobservable λ from a constant to a stochastic process (two-state Markov
chain) does not change the belief updating upon the immediate arrival of a jump. How-
ever, belief updating conditional on no jump arrival is different from the baseline case with
unobservable constant arrival rate λ.

Next, we calculate the posterior belief πt at t conditional on no jump arrival over the time
interval (s, t), i.e., dJv = 0 for s < v ≤ t. Using (OA.3) and integrating {πv; v ∈ (s, t)} from
s to t conditional on no jump over the interval (s, t), we obtain the following function:

πt = πs −
2(δ0π

2
s + δ1πs + δ2)(e

−
√
δ21−4δ0δ2(t−s) − 1)

(
√
δ21 − 4δ0δ2 + δ1 + 2δ0πs)(e

−
√
δ21−4δ0δ2(t−s) − 1) + 2

√
δ21 − 4δ0δ2

, (OA.5)

where δ0 = −(λG − λB), δ1 = λG − λB − (φG + φB), and δ2 = φG . For our baseline model
(φG = φB = 0), πt in (OA.5) can be simplified to (14).
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Figure O-1: This figure plots the time series of πt absent jumps in our generalized model,
where the jump arrival rate, λ, is unobservable and follows a two-state Markov chain taking
on two possible values (λG = 0.1 and λB = 0.8) with a prior of π0 = 0.08 that the current value
of λ is λB. Our baseline model with constant unobservable λ corresponds to φG = φB = 0
(the dashed red line).

In Figure O-1, we plot the belief process {πt : t ∈ (0, 20)} conditional on no jump arrival,
which means dJv = 0 where v ∈ (0, t) = (0, 20), for three cases: 1.) the stationary case with
φG = φB = 2% (the solid blue line); 2.) the case with φG = 2% and φB = 0, where the
economy is eventually absorbed at the B state, (the dotted black line); and 3.) the baseline
constant λ case as φG = φB = 0 (the dashed red line). The prior for the low value of λ is set
at π0 = 0.08 for all three cases.

First, for the two cases with stochastic λ, πt decreases with t even absent jump arrivals.
For example, the solid blue line (for the φG = φB = 2% case) shows that πt slowly decreases to
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0.0277 in twenty years absent jump arrivals. For the other case where the B state is absorbing
(φB = 0), πt decreases to 0.0285 at t = 20 absent jumps (the dotted black line.) The belief
dynamics for these two cases with stochastic λ are similar to the dynamic for our constant
unobservable λ model (the dashed red line), which shows that πt decreases over time to zero
and the agent becomes more optimistic (the no-news-is-good-news result), and the only differ-
ence is the long-run mean absent jump arrivals. So long as the transition rates φG and φB are
small (which is the practically relevant case), our baseline model (with constant unobservable
λ) and the stochastic unobservable λ model generate similar quantitative predictions. For
parsimony, we use the constant λ model for our quantitative analysis in the paper.

OA.2 Solution

Using the belief process {πt} given in (OA.3), we obtain the following HJB equation for the
planner’s allocation problem:

0 = max
C, I,xe xd

f(C, V ) + (I− δKK)VK(K, π) + µ̂π(π)Vπ(K, π) +
1

2
σ2
KK

2VKK(K, π)

+λ(π)Exd [
V
(
(1−N(xe)(1− Z))K, πJ )− V (K, π)

]
, (OA.6)

where µ̂π(π) is given in (OA.4). The FOCs for aggregate investment I, (scaled) aggregate
disaster distribution mitigation spending xd, and (scaled) aggregate disaster exposure miti-
gation spending xe are the same as those for our baseline model (with constant unobservable
λ), which are given in (18), (19), and (20), respectively.

Substituting the value function V (K, π) given in (21) and its derivatives into the HJB
equation (OA.6), using the three FOCs ((18), (19), and (20)), and simplifying these equations,
we obtain the four-equation ODE system for b(π), i(π), xd(π) and xe(π), given in

0 =
ρ

1− ψ−1

[[
b(π)

ρ(1 + ϕ′(i(π)))

]1−ψ
− 1

]
+ i(π)− δK − γσ2

K

2
+ µ̂π(π)

b′(π)

b(π)

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd(π)((1−N(xe(π))(1− Z))1−γ)− 1

 . (OA.7)

and (23)-(25) for π ∈ (0, 1). The key difference between (OA.7) and the ODE (22) for b(π)
in our baseline model (with constant but unobservable λ) is that the drift of π absent jumps,
µ̂π(π) given in (OA.4), appears in (OA.7) while µπ(π) given in (13) appears in the ODE (22).3

The other three equations for i(π), xd(π) and xe(π) for our stochastic λ model are (23), (24),
and (25), the same as those for our baseline model of Section 3. The boundary conditions at
the π = 0 and π = 1 states are implied by the preceding equations.

Next, we summarize the solution for our generalized learning model.

Proposition 6 The first-best solution for our generalized learning model is given by the value
function (21) and the quartet policy rules, b(π), i(π), xd(π), and xe(π), where 0 ≤ π ≤ 1, via
the four-equation ODE system ((OA.7), (23), (24), and (25)).

3The wedge µ̂π(π) − µπ(π) = (φG − (φB + φG)π) precisely captures the effect of stochastic transition
between the G and B states.
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Figure O-2: This figure compares two learning models: the constant λ and the stochastic λ
models. The transition rates are φG = φB = 0.02 for the stochastic λ model (solid blue lines).
The transition rates are φG = φB = 0 for our baseline (constant λ) model (dashed red lines).

OA.3 Quantitative Analysis

Next, we analyze the solutions for our generalized model with stochastic unobservable λ. For
the stochastic λ model, we set both the transition rate from state G to B (φG) and that from
state B to G (φB) to 2%, i.e., φG = φB = 1/50 = 2%, which imply an average duration of
50 years for both G and B states. In the long run, the economy is in either state G or B
with equal (50%) probability. To ease exposition and facilitate comparison with our baseline
(constant unobservable λ) model, we keep all other parameter values unchanged.

In Figure O-2, we plot (scaled) public mitigation xd(π) (Panel A), (scaled) private mitiga-
tion xe(π) (Panel B), investment-capital ratio i(π) (Panel C), and consumption-capital c(π)
(Panel D) as functions of belief π for the planner’s first-best solutions: the solid blue lines are
for the baseline constant λ model and the dashed red lines are for the stochastic λ model.

Panels A and B show that for both public mitigation xd(π) and private exposure mitigation
xe(π) are significantly lower for the stochastic λ model, and this is intuitive because the agent
is exposure to less uncertainty about the belief due the mean reversion of π in the stochastic λ
model, which induces less mitigation motivation. Quantitatively, the differences for investment
and consumption are of very small (second- and third-order effects, as we can see from the
scale for the vertical axes in Panels C and D.) This is because the transition of λ occurs once
every fifty years on average.

Note that investment and consumption are even flatter (less responsive to changes of belief)
in the stochastic λ model than in the constant λ model. Figure O-3 corroborates the belief
mean reversion effect on welfare, growth, and valuation by showing that the welfare measure,
the WTP ζp(π) (Panel A), the expected growth rate g(π) (Panel C), Tobin’s average q, and
the risk-free rate r(π) are all smoother (flatter) as functions of π in the stochastic λ model
than in the constant λ model.

The intuition is as follows. As belief mean reversion in the stochastic λ model, the agent is
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less optimistic in the low-π state but also less pessimistic in the high-π state, in the stochastic
λ model, i.e., compared with the constant λ model. As a result, the planner reduces both
consumption and investment in response to changes of belief (so that the planner better
smoothes investment/consumption across states and over time.)

In sum, our analysis shows that for plausible values of slow belief mean reversion, the
quantitative results of our learning model (with stochastic λ) are similar to those of our
learning model (with constant λ). And we confirm the intuition that belief mean reversion
reduces the impact of learning on welfare, valuation and policy rules.
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Figure O-3: This figure compares two learning models: the constant λ and the stochastic λ
models. The transition rates are φG = φB = 0.02 for the stochastic λ model (solid blue lines).
The transition rates are φG = φB = 0 for our baseline (constant λ) model (dashed red lines).

OB External Habit Model

In this appendix, we solve the model with external habit (Campbell-Cochrane) preferences
(Section 7.7) and provide a quantitative analysis.4

OB.1 Model

The representative agent has a non-expected utility over consumption {Ct; t ≥ 0} relative to
a stochastic habit process {Ht; t ≥ 0} (Campbell and Cochrane, 1999) given by:

E
(∫ ∞

0

ρe−ρtU(Ct,Ht)dt

)
, (OB.8)

4An alternative to the external habit model analyzed in this section is to specify an internal habit formation
model as in Jermann (1998). Due to space constraints, we leave the internal habit formation model out.
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where ρ > 0 is the time rate of preference, U(C,H) = (C−H)1−γ

1−γ , and γ > 0 is a curvature
parameter. It is convenient to work with St, the surplus consumption ratio at t defined as

St =
Ct −Ht

Ct
. (OB.9)

Let st be its natural logarithm: st = ln(St). As in Campbell and Cochrane (1999) and
this literature, we assume that st follows a mean-reverting process with stochastic volatility:

dst = (1− κs)(s− st)dt+ δ(st)σKdWK
t , (OB.10)

where s > 0 is the steady-state value of st and κs measures the degree of persistence.5 The
function δ(st) in (OB.10) is the same sensitivity function as the one in Campbell and Cochrane
(1999). The production side of the economy and the learning model are the same as in our
baseline model of Section 2.

Planner’s solution. The (log) surplus consumption ratio {st; t ≥ 0} acting as the exoge-
nous preferences shock is the new state variable. Let V (K, π, s) denote the household’s value
function. The following HJB equation characterizes the planner’s optimal resource allocation:

ρV = max
C, I,xe xd

ρ
(Ces)1−γ

1− γ
+ (I− δKK)VK + µπ(π)Vπ + (1− κs)(s− s)Vs +

σ2KK2VKK

2
+

1

2
σ2Kδ(s)

2Vss

+ σ2Kδ(s)KVKs + λ(π)Exd [
V
(
(1−N(xe)(1− Z))K, πJ , s

)
− V (K, π, s)

]
. (OB.11)

Unlike in our baseline model with the Epstein-Zin utility, the agent now not only takes into
account the evolution of s (via the drift term involving Vs and the quadratic-variation term
involving Vss), but also has incentives to hedge against shocks to the surplus consumption
ratio (via the quadratic-covariation term involving VKs).

We show that the value function V (K, π, s) is homogeneous with degree (1− γ) in K:

V (K, π, s) =
1

1− γ
(b(π, s)K)1−γ , (OB.12)

where b(π, s) is a measure of welfare proportional to the certainty equivalent wealth under
optimality. (To ease comparison, we still use b as the function for the welfare measure here
but with the understanding that the b function for external habit model depends on both π
and s and differs from the b function for our baseline Epstein-Zin model.)

Importantly, unlike the welfare measure (b(π)) in our baseline model (Section 3), b(π, s) in
our external habit model depends on not only belief π but also the (log) surplus consumption
ratio s. Our external habit model is technically more challenging than our baseline model with
Epstein-Zin utility, as the external habit becomes an additional state variable in addition to
capital stock and belief.6

In (OB.10), δ(st) is the sensitivity function proportional to the conditional volatility of dst
in response to dWK

t , which we assume is given by the following square-root function:

δ(s) =
1

S

√
1− 2(s− s)− 1 , s ≤ smax (OB.13)

5We write 1− κs as the rate of mean reversion as in Campbell and Cochrane (2015). The higher the value
of κs, the more persistent the st process. The κs = 1 special case corresponds to a unit-root process.

6Because of the homogeneity property of the Epstein-Zin utility, only capital stock and belief are state
variables after simplifying the model solution.
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and δ(s) = 0 for s > smax, where smax = s+ 1−S2

2
and S = es.7

OB.2 Solution

Substituting the value function given in (OB.12) into the HJB equation (OB.11), we obtain

0 = max
c, i,xe xd

ρ

1− γ

[(
c(π, s)es

b(π, s)

)1−γ
− 1

]
+ (i(π, s)− δK) + µπ(π)

bπ(π, s)

b(π, s)

+(1− κs)(s− s)
bs(π, s)

b(π, s)
−
γσ2K
2

+
σ2Kδ(s)

2

2

(
bss(π, s)

b(π, s)
− γ

(bs(π, s))
2

b(π, s)2

)

+(1− γ)σ2Kδ(s)
bs(π, s)

b(π, s)
+
λ(π)

1− γ

(b (πJ , s)
b(π, s)

)1−γ

Exd
((1−N(xe(π, s))(1− Z))1−γ)− 1

 .

Using the resource constraint c = A− i−ϕ(i)−xd−xe to simplify the FOC for investment
i, we obtain the ODE system in the region where π ∈ [0, 1] and s ∈ (−∞, smax):

0 =
ρ

1− γ

[(
b(π, s)e−s

ρ(1 + ϕ′(i(π, s)))

)1−γ−1

− 1

]
+ (i(π, s)− δK) + (1− κs)(s− s)

bs(π, s)

b(π, s)

+ µπ(π)
bπ(π, s)

b(π, s)
− γσ2

K

2
+
σ2
Kδ(s)

2

2

(
bss(π, s)

b(π, s)
− γ

(bs(π, s))
2

b(π, s)2

)
+ (1− γ)σ2

Kδ(s)
bs(π, s)

b(π, s)

+
λ(π)

1− γ

(b (πJ , s
)

b(π, s)

)1−γ

Exd(π,s)((1−N(xe(π, s))(1− Z))1−γ)− 1

 , (OB.14)

and

b(π, s) = [A− i(π, s)− ϕ(i(π, s))− xd(π, s)− xe(π, s)]γ/(γ−1) [ρq(π, s)]1/(1−γ) es , (OB.15)

1

q(π, s)
= λ(π)

[
b
(
πJ , s

)
b(π, s)

]1−γ
N ′(xe(π, s))Exd(π,s)

[
(Z − 1)(1−N(xe(π, s))(1− Z))−γ

]
,

(OB.16)

1

q(π, s)
=

λ(π)

1− γ

[
b
(
πJ , s

)
b(π, s)

]1−γ ∫ 1

0

[
∂ξ(Z;xd(π, s))

∂xd
(1−N(xe(π, s))(1− Z))1−γ

]
dZ ,

(OB.17)

where Tobin’s q is given by the standard q-theoretic formula: q(π, s) = 1 + ϕ′(i(π, s)) .
Using the resource constraint c = A− i−ϕ(i)−xd−xe to simplify the FOCs for mitigation

spendings, xe and xd, we obtain the optimal exposure mitigation and distribution mitigation
spending rules, (OB.16) and (OB.17) for xe and xd, respectively. The boundary conditions at
the absorbing states (π = 0 and π = 1) are implied by the preceding equations.

7Additionally, we set S = σK
√

γ
1−κs

as in Campbell and Cochrane (1999).
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At s = smax, we have the following boundary condition:

0 =
ρ

1− γ

[(
b(π, smax)e

−smax

ρ(1 + ϕ′(i(π, smax)))

)1−γ−1

− 1

]
+ (i(π, smax)− δK)

+ (1− κs)(s− smax)
bs(π, smax)

b(π, smax)
− γσ2

K

2
+ µπ(π)

bπ(π, smax)

b(π, smax)

+
λ(π)

1− γ

[(
b
(
πJ , smax

)
b(π, smax)

)1−γ

Exd(π,smax)((1−N(xe(π, smax))(1− Z))1−γ)− 1

]
. (OB.18)

Additionally, i(π, smax), x
e(π, smax) and xd(π, smax), satisfy (OB.15)- (OB.17) at s = smax.

8

We summarize our model’s solution in the following proposition.

Proposition 7 The first-best solution for our external habit model is given by the value
function (OB.12) and the quartet policy rules, b(π, s), i(π, s), xd(π, s), and xe(π, s), where
0 ≤ π ≤ 1 and −∞ < s ≤ smax, via the four-equation ODE system (OB.14), (OB.15),
(OB.16) and (OB.17), together with (OB.18) and (OB.15)-(OB.17) for s = smax.

Next, we use the planner’s solution to derive our model’s asset pricing implications.

OB.3 Asset Pricing Implications

Using the planner’s solution, we infer the SDF Mt process by applying Ito’s Lemma to:

Mt = e−ρt
UC(Ct,Ht)

UC(C0,H0)
= e−ρt

(
CtSt
C0S0

)−γ

. (OB.19)

We then use the no-arbitrage restriction for the SDF to obtain the equilibrium risk-free rate,
the market price of risk, and the stock market risk premium.

Then using Ito’s lemma, we obtain

dMt

Mt
= −ρdt− γ

(
i(π, s)− δK −

σ2K
2

)
dt+ (1− κs)(s− st)

(
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)
− 1

)
dt

+ µπ(π)

(
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

)
dt−

[
(1− γ)

bs(π, s)
2

b(π, s)2
− qs(π, s)

2

q(π, s)2

]
(σKδ(s))

2

2
dt+

σM(π, s)2

2
dt

+

[
(1− γ)

bss(π, s)

b(π, s)
− qss(π, s)

q(π, s)

]
(σKδ(s))

2

2
dt− σM(π, s)dWK

t + [η(π, s;Z,xe)− 1] dJt , (OB.20)

where η(π, s;Z,xe) = q(π,s)
q(πJ ,s)

(
b(πJ ,s)
b(π,s)

)1−γ

(1−N(xe(π, s))(1− Z))−γ and

σM(π, s) =

[(
1 +

qs(π, s)

q(π, s)
− (1− γ)

bs(π, s)

b(π, s)

)
δ(s) + γ

]
σK . (OB.21)

8Note that as s→ −∞ is not reachable in equilibrium, we can ignore the corresponding boundary conditions
for our numerical analysis.

O-8



Using the equilibrium restriction that the drift of dMt

Mt
equals −rt−dt, we obtain:

r(π, s) = ρ+ γ

(
i(π, s)− δK −

σ2K
2

)
− (1− κs)(s− st)

(
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)
− 1

)
− µπ(π)

(
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

)
+

[
(1− γ)

bs(π, s)
2

b(π, s)2
− qs(π, s)

2

q(π, s)2

]
(σKδ(s))

2

2

−
[
(1− γ)

bss(π, s)

b(π, s)
− qss(π, s)

q(π, s)

]
(σKδ(s))

2

2
− σM(π, s)2

2
− λ(π)

[
Exd

(η(π, s;Z,xe))− 1
]
.

(OB.22)

Applying Ito’s Lemma to firm value Q(K, π, s) = q(π, s)K and using (OB.20), we obtain:

r(π, s)q(π, s) = max
i, xe

A− i− ϕ(i)− xe + (i− σM(π, s)σK)q(π, s) + µπ(π)qπ(π, s)

+
[
(1− κs)(s− s) + δ(s)σ2K − σM(π, s)δ(s)σK

]
qs(π, s) +

σ2Kδ(s)
2

2
qss(π, s)

+ λ(π)Exd [
η(π, s;Z,xe)

(
q(πJ , s)(1−N(xe)(1− Z))− q(π, s)

)]
. (OB.23)

Finally, using the equilibrium conditions q(π, s) = q(π, s) and xe(π, s) = xe(π, s), we write

dQt +Dt−dt

Qt−
=

[
µQ(πt−, st−) + λ(πt−)

(
QJ
t

Qt−
− 1

)]
dt+

[
qs(πt−, st−)δ(st−)

q(πt−, st−)
+ 1

]
σKdWK

t

+

(
QJ
t

Qt−
− 1

)
(dJt − λ(πt−)dt) , (OB.24)

where
QJ

t

Qt−
=

(1−N(xe
t−)(1−Z))q(πJ

t ,st−)
q(πt−,st−)

. and

µQ(πt−, st−) = r(πt−, st−) + σM(πt−, st−)

(
1 + δ(st−)

qs(πt−, st−)

q(πt−, st−)

)
σK

+λ(πt−)Exd
t−

[
η(πt−, st−;Z,x

e
t−)

(
1− QJ

t

Qt−

)]
. (OB.25)

The market risk premium is

rp(πt−, st−) = σM(πt−, st−)

(
1 + δ(st−)

qs(πt−, st−)

q(πt−, st−)

)
σK

−λ(πt−)Exd
t−

[(
η(πt−, st−;Z,x

e
t−)− 1

)(QJ
t

Qt−
− 1

)]
. (OB.26)

Next, we calibrate the model and provide a quantitative analysis.

OB.4 Quantitative Analysis

The key new parameter for the external habit model is the (log) surplus consumption pa-
rameter κs. We set the persistence parameter for external habit at κs = 0.87 per annum as
in Campbell and Cochrane (1999). For other parameter values, we borrow from the baseline
model to ease exposition.
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Figure O-4: This figure compares the first-best solutions for the external habit model (solid
blue lines) and the baseline model with Epstein-Zin recursive utility (dashed red lines). The
parameter values for our baseline (Epstein-Zin) model are summarized in Table 4.

OB.5 Quantitative Results

In Figures O-4 and O-5, we compare the external habit model at the steady state where
S = S = 0.63 with the Epstein-Zin recursive utility model. Panel A of Figure O-4 shows that
the distribution mitigation xd(π) policies for the two utility models are close to each other.
However, Panel B of Figure O-4 shows that the exposure mitigation xe(π) policies for the two
models can differ somewhat for intermediate values of π. Nonetheless, our findings based on
these two utility models suggest that our main results on how changes of belief impact disaster
distribution and exposure adaptation spendings are reasonably robust.

Panel C of Figure O-4 shows that the investment-capital ratio is lower in our Epstein-Zin
model than in the external habit model at the steady state where S = S = 0.63. Panel D of
Figure O-4 shows that the consumption-capital ratio is higher in our Epstein-Zin model than
in the external habit model, which is expected as the sum of adaptation spending, investment,
and consumption is the same and equals the productivity A in these two models.

It is interesting to note that while i(π) decreases with π for the Epstein-Zin utility model,
i(π) increases with π in the external habit model. This difference is caused by the long-run
risk force in the Epstein-Zin utility specification, where the EIS ψ > 1. To generate the
prediction that worsening belief (increasing π) lowers Tobin’s q and equivalently investment
(as investment increases with Tobin’s q), we require ψ > 1.

The external habit model differs from the baseline Epstein-Zin utility model in two ways.
First, risk aversion is significantly enhanced by and also varies with external habit. Second,
the EIS implied by our external habit model also generates a time-varying elasticity of in-
tertemporal substitution (EIS). As risk aversion increases with habit stock, the EIS decreases.
This is why our model predicts investment (and hence Tobin’s q) increases with belief. Fig-
ure O-5 reports the WTP, conditional damage ℓ(π), the expected growth rate g(π), Tobin’s
average q(π), the risk-free rate r(π), and the market risk premium rp(π). While there are
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Figure O-5: This figure compares the first-best solutions for the external habit model (solid
blue lines) and the baseline model with Epstein-Zin recursive utility (dashed red lines). The
parameter values for our baseline (Epstein-Zin) model are summarized in Table 4.

some differences, we see that these two models generate similar results when it comes to the
importance of adaptations in reducing conditional damage and insuring growth.
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Figure O-6: This figure plots the optimal policies for the first-best economy (solid blue lines)
and the market economy (dashed red lines) as functions of surplus consumption ratio S, for
the external habit (Campbell-Cochrane) model, where π0 = 0.08.

In Figure O-6, we focus on the external habit utility model by comparing two formulations:
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the planner’s first-best economy (solid blue lines) with the market economy solution (dashed
red lines). We plot the two mitigation spending, investment, and consumption policies for
varying levels of S, for a given belief π0 = 0.08.

Panel A of Figure O-6 shows that there is no public mitigation in a competitive market
economy for the same externality argument as in our baseline model with Epstein-Zin utility.
This Panel also shows that xd increases as the surplus consumption ratio increases. Similarly,
both the exposure mitigation spending and investment increase with S (Panels B and C). The
intuition for these results is as follows. As we increase S, the marginal utility of consumption
(and SDF Mt) decrease, which causes c to decrease with S (see Panel D). Additionally, the
marginal value of investment and that of mitigation (for both types) increase, which causes
xd, xe, and i to increase with S as shown in Panels A, B, and C).

Finally, we note that the private mitigation spending xe is larger for the market economy
than for the planner’s economy. This is because the marginal benefit of private mitigation
is higher in the market economy as there is no public mitigation. In contrast, as the public
mitigation spending xd is positive and significant under the planner’s economy, the additional
value of private mitigation spending in the planner’s economy is smaller and hence xe is smaller
under the planner’s economy than under the market economy (a substitution effect.)

In sum, we show that time-varying risk aversion induced by external habit influences
optimal mitigation policies, but the general results that we obtain from our baseline model
with Epstein-Zin utility remains valid in our external habit model.

OC Comparative Statics

OC.1 Elasticity of Intertemporal Substitution ψ

In Figure O-7, we plot the first-best solutions for three levels of the EIS ψ: γ = 0.125, 1, 1.5.
Panels A and B show that the lower the EIS ψ the higher both public mitigation xd and
private mitigation xe spendings. Quantitatively, these differences are not very large. Panel C
shows that the lower the EIS ψ the higher the investment-capital ratio i(π). Panel D shows
that the lower the EIS ψ the lower the consumption-capital ratio c(π), as c = A−(i+xd+xe).
Panel E shows that the lower the EIS ψ the higher Tobin’s average q(π). This follows directly
from the comparative static result of changing ψ on i (Panel C), as Tobin’s q is increasing with
i: q(π) = 1 + ϕ′(i(π)). Panel F shows that the lower the EIS ψ the higher the price-dividend
ratio q(π)/c(π), which follows from the comparative effects shown in Panels D and E.

The intuition is as follows. The higher the EIS ψ, the less marginal propensity to consume
as in partial equilibrium model consistent with Ramsey/Friedman consumption rule. As a
result, the agent spends more on mitigation and also invests more for the future.

Additionally, we show that whether the price-dividend ratio q(π)/c(π) increases or de-
creases when disaster arrives (which increases (worsens) belief π) crucially depends on whether
the EIS ψ is larger or smaller than one. In our baseline case where ψ = 1.5 > 1, the equilibrium
price-dividend ratio q(π)/c(π) decreases when a disaster arrives (i.e., when π increases). This
result is consistent with Bansal and Yaron (2004) and the subsequent long-run risk literature,
who show that the price-dividend ratio decreases in response to a negative growth shock when
the EIS parameter ψ is set to be larger than one. Unlike Bansal and Yaron’s pure exchange
economy, our model features production and hence we need to compute the endogenous divi-
dend c together with value of capital, Tobin’s q, in order to obtain the price-dividend ratio.
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Figure O-7: This figure plots the first-best solution for three values of the EIS ψ: 1/γ =
0.125, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other parameter
values are given in Table 4.

However, we obtain the same results for the effect of EIS on the price-dividend ratio.
For the unity EIS (ψ = 1) Epstein-Zin utility case, which is a generalized version of

expected logarithmic utility (with a flexible choice of risk aversion parameter γ), the wealth
and the substitution effects exactly offset each other. As a result, the equilibrium price-
dividend ratio remains constant, i.e., q(π)/c(π) = 1/ρ = 20 at all levels of π (See the dotted
line in Panel F.) Finally, with ψ = 1/γ = 0.125 < 1, the wealth effect is stronger than
the substitution effect. For this case, as belief worsens (increases), the price-dividend ratio
q(π)/c(π) increases, which is empirically counterfactual. This is one reason (among others)
why Epstein-Zin utility with an EIS larger than one (ψ > 1) is a more appealing utility
specification than commonly used expected utility for asset pricing.

In Figure O-8, we show that the the quantitative effects of EIS ψ on the WTP is large
(Panel A). In Panel B, the lower the EIS ψ, the lower the conditional damages ℓ(π). This is
because the agent with a lower EIS mitigates less as we show in Panels A and B of Figure
O-8. As a result, the lower EIS the lower the conditional damages ℓ(π). Figure O-9 of Panel A
shows that the lower the EIS ψ, the higher the expected growth rate g(π). This result follows
from 1.) the lower the EIS the higher investment result (as shown in Panel C in Figure O-7)
and 2.) the lower the EIS the higher damage ℓ(π) (as shown in Panel B of Figure O-8.)

Note that the effects of the EIS on the interest rate is ambiguous which depends on the
agent’s belief (Panel B). Panel C of Figure O-9 shows the higher the EIS the lower mitigation
in equilibrium the higher risk premium.
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Figure O-9: This figure plots the planner’s first-best solution for three values of the EIS
ψ: 1/γ = 0.125, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.

OC.2 Disaster Arrival Rate λB in State B

In Figure O-10, we plot the first-best solutions for three levels of the disaster arrival rate in
state B: λB = 0.4, 0.8, 1. Panel A shows that the higher the disaster arrival rate λB in state
B, the higher the public mitigation spending xd. Moreover, the more pessimistic the agent’s
belief the stronger this effect. Note that the wedge between the lines for two different levels
of λ widens as π increases.

Panel B shows that increasing the arrival rate λB has a highly nonlinear effect on the private
mitigation spending xe. Increasing λB from 0.4 to 0.8 significantly increases the mitigation
spending (for sufficiently large values of π.) However, further increasing λB from 0.8 to 1 has
limited effects on the mitigation spending. Panel C shows that as λB increases, investment
falls. The higher the belief level π (the more pessimistic the agent) the larger the impact of
λB on i. Panel D shows that the impact of λB on consumption c is ambiguous due to the
general equilibrium effect.

In Figure O-11, we show that λB has a large effect on the WTP ζp (Panel A). For example,
when the belief changes from π = 0 to π = 1, the WTP increases from about 0 to 13% when
λB = 1. In contrast, when λB = 0.4, the WTP barely changes from 0 to 2% in response to the
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Figure O-10: This figure plots the planner’s first-best solution for three values of the annual
disaster arrival rate λB: 0.4, 0.8, 1 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.

same change of the belief. Panel B shows that the higher the arrival rate λB the smaller the
conditional damage ℓ(π). This is intuitive as mitigation spending is higher when λB is larger.
However, as investment is lower when λB is larger, the impact of λB on the growth rate g(π)
is minimal as the two channels (investment and conditional damage) offset each other (Panel
C). Panel D shows that the higher the arrival rate λB the lower Tobin’s q, tracking the impact
of λB on i(π) as q(π) = 1 + θi(π). Panel E and Panel F show that the quantitative effects of
λB on the risk-free rate r and the market risk premium rp are moderate at best.

OC.3 Time Rate of Preference ρ

In our baseline calculation, we set the time rate of preference ρ at 5% per annum, a commonly
used value. Next, we compare our baseline model results with two other economies with lower
discount rates: ρ = 4.5% and ρ = 6%.

Panels A and B of Figure O-12 show that the higher the time rate of preference ρ, the less
the planner spends on both types of mitigation spendings, xd and xe. Similarly, Panel C of
Figure O-12 shows that the higher the time rate of preference ρ, the less the planner invests
and Panel D shows that the higher the time rate of preference ρ the more the agent consumes.
The quantitative effects on consumption are large. For example increasing ρ from 4.5% to 6%
roughly increases consumption c from 12% to 15% per annum.

In Figure O-13, we show that the quantitative effects of the time rate of preference ρ on the
WTP is significant (Panel A). For example, when we change from π = 0 to π = 1, the WTP
increases from about 0 to 6.7% when ρ = 6%, and increases from 0 to 10% when ρ = 4.5%.

The higher the time rate of preference ρ the higher the conditional damage ℓ(π) (Panel B)
and the lower the Tobin’s q (Panel D) as the agent is less patient and puts a smaller weight
on the future. Since these two forces push towards the same direction, the higher the discount
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Figure O-11: This figure plots the planner’s first-best solution for three values of the annual
disaster arrival rate λB: 0.4, 0.8, 1 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.
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Figure O-12: This figure plots the planner’s first-best solution for three values of the annual
time rate of preference ρ: 4.5%, 5%, 6% for our baseline learning model (with Epstein-Zin
utility). The other parameter values are given in Table 4.

rate ρ the lower growth rate g (Panel C).
Finally, Panel E shows that the quantitative effect of ρ on the risk-free rate r is moderate

at best and Panel F shows that the effect of ρ on the market risk premium rp is very small.
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Figure O-13: This figure plots the planner’s first-best solution for three values of the annual
time rate of preference ρ: 4.5%, 5%, 6% for our baseline learning model (with Epstein-Zin
utility). The other parameter values are given in Table 4.

OC.4 Coefficient of Relative Risk Aversion γ

In our baseline calculation, we set the coefficient of relative risk aversion γ at 8, which is
within the range of widely used values (e.g., 2 to 10). Next, we compare our baseline model
results to two other economies with γ = 4 and γ = 10.

Panel A of Figure O-14 shows that the higher the coefficient of relative risk aversion γ,
the more the planner spends on distribution mitigation xd and the less the planner spends
on exposure mitigation xe. The higher the coefficient of relative risk aversion γ the less the
planner invests (Panel C), the more the agent consumes (Panel D).

In Figure O-15, we show that the quantitative effects of increasing risk aversion from γ = 4
to γ = 10 on the WTP is large (Panel A). For example, as we increase γ from 4 to 10, the
WTP ζp increases from 6.6% to 9.8% when the agent’s belief is π = 1.

The higher the coefficient of relative risk aversion γ the lower the conditional damage ℓ(π)
(Panel B of Figure O-15) and the lower the growth rate g(π) (Panel C of Figure O-15). This is
because a more risk-averse agent mitigates more but invests less. Quantitatively, the negative
effect of increasing γ via investment on growth dominates the positive effect of increasing γ
via mitigation. As a result, the net effect of increasing γ on growth is negative.

Finally, Panels E and F of Figure O-15 show that the quantitative effects of γ on the
risk-free rate r and the market risk premium rp are very large, as we expect (in line with
standard asset pricing results.)

Panel A of Figure O-14 shows that the higher the coefficient of relative risk aversion γ,
the more the planner spends on distribution mitigation xd and the less the planner spends
on exposure mitigation xe. The higher the coefficient of relative risk aversion γ the less the
planner invests (Panel C), the more the agent consumes (Panel D).
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Figure O-14: This figure plots the planner’s first-best solution for three values of coefficient
of relative risk aversion γ: 4, 8, 10 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.
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Figure O-15: This figure plots the planner’s first-best solution for three values of the coefficient
of relative risk aversion γ: 4, 8, 10 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.

OC.5 Welfare Decomposition

In Figure O-18, we plot the welfare percentage gain, where welfare is measured in terms of
willingness to pay (WTP), if we were to transition from our baseline first-best economy with
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Figure O-16: This figure plots the planner’s first-best solution for three values of adjust-
ment cost θ: 12, 17, 24 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.
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Figure O-17: This figure plots the planner’s first-best solution for three values of adjust-
ment cost θ: 12, 17, 24 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.

learning (analyzed in Section 3) to various newly constructed economies.
In Panel A, the newly constructed economy features no disaster shocks at all, i.e., λG =

λB = 0, the percentage gain for the consumer’s WTP (in units of certainty equivalent wealth)
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increases from about 7% when π = 0 to about 30% when π = 1, if the economy transitioned
from our baseline economy to this economy with no disaster shocks at all. In Panel B, we shut
down diffusion shocks in the newly constructed economy by setting σK = 0. The percentage
WTP gain decreases from about 43% when π = 0 to about 39% when π = 1, if the economy
transitioned from our baseline economy to this economy with σK = 0. In Panel C, the
newly constructed economy features neither disaster (jump) shocks nor diffusion shocks, i.e.,
λG = λB = σK = 0. The percentage welfare gain for the representative consumer’s WTP
increases from about 47% when π = 0 to about 61% when π = 1, as we transition from our
baseline economy (in Section 2) to this newly constructed economy with no risk at all.

Note that the WTP at π = 1 for this transition is 61%, lower than the sum of the WTP
gain in Panel A (30%) and the WTP gain in Panel B (39%) by 8%. This more than 10%
reduction of the WTP gain is due to the interaction between diffusive shocks and jump shocks
in our learning model. That is, the total impact on WTP of shutting down both jump shocks
(λG = λB = 0) and diffusion shocks (σK = 0) together is smaller than the sum of (1.) the
effect on WTP by shutting down the jump shocks (λG = λB = 0 only and (2.) the effect on
WTP by shutting down the diffusion shocks (σK = 0) only.

0 0.5 1
0

0.1

0.2

0.3

0.4

π

A. λG = λB = 0

0 0.5 1
0.38

0.39

0.4

0.41

0.42

0.43

π

B. σK = 0

0 0.5 1
0.45

0.5

0.55

0.6

0.65

π

C. λG = λB = σK = 0

Figure O-18: Willingness-to-pay (WTP) calculations. Panel A plots the WTP percent-
age gain by changing λG = 0.1 and λB = 0.8 to λB = λG = 0. Panel B plots the WTP
percentage gain by changing σK = 8% in our baseline economy to σK = 0. Panel C plots the
WTP percentage gain by changing λG = 0.1, λB = 0.8, and σK = 8% to λB = λG = σK = 0.

OD A Generalized Model with Carbon Stock

In this appendix, we solve our generalized model with carbon stock.

OD.1 The PDE System

Using the FOCs and substituting the value function V (K,S, π) given in (66) into the HJB
equation (62), and simplifying the expressions, we obtain the following five-equation PDE
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system for b(π, s), i(π, s), xd(π, s), xe(π, s), and h(π, s):

0 =
ρ

1− ψ−1

[[
b(π, s)−sbs(π, s)

ρ(1 + ϕ′(i(π, s)))

]1−ψ
− 1

]
+ (i(π, s)− δK)

b(π, s)− sbs(π, s)

b(π, s)
−
γσ2K
2

+ µπ(π)
bπ(π, s)

b(π, s)

+ (h(π, s)− δSs+ γ(σ2K − ϑσKσS)s)
bs(π, s)

b(π, s)
+

(σ2S−2ϑσKσS + σ2K)s2

2

(
bss(π, s)

b(π, s)
− γ

(bs(π, s))
2

b(π, s)2

)

+
λ(π)

1− γ

Exd(π,s)

(
(1−N(xe(π, s))(1− Z))b

(
πJ , sJ

)
b(π, s)

)1−γ

− 1

 , (OD.27)

b(π, s) = [Ah(π, s)1−α − i(π, s)− ϕ(i(π, s))− xd(π, s)− xe(π, s)− pHh(π, s)]
1/(1−ψ)[

ρ(1 + ϕ′(i(π, s)))
b(π, s)

b(π, s)− sbs(π, s)

]−ψ/(1−ψ)
, (OD.28)

bs(π, s)

b(π, s)− sbs(π, s)
=
pH − (1− α)Ah(π, s)−α

1 + ϕ′(i(π, s))
, (OD.29)

1

1 + ϕ′(i(π, s))
= λ(π)Exd(π,s)

[
(Z − 1)N ′(xe(π, s))

(
b
(
πJ , sJ

)
− sJ bs

(
πJ , sJ

))
b(π, s)

×

(
(1−N(xe(π, s))(1− Z))b

(
πJ , sJ

)
b(π, s)

)−γ]
, (OD.30)

1

1 + ϕ′(i(π, s))
=

λ(π)

1− γ

∫ 1

0

∂ξ(Z;xd(π, s))
∂xd

(
(1−N(xe(π, s))(1− Z))b

(
πJ , sJ

)
b(π, s)

)1−γ
 dZ ,
(OD.31)

where sJ = s
1−N(xe(π,s))(1−Z) is the post-jump carbon-stock-to-productive-capital ratio s.9

OD.2 Competitive Market Equilibrium Solution

Firm’s Optimization Problem. Taking the equilibrium risk-free rate rt and the market
price of (diffusion and jump) risks, the firm maximizes its market value, Q(K, π, s) given in
(5), where {Yt} is the firm’s payout process given in (68).

Applying Ito’s Lemma to firm value Q(K, π, s) = q(π, s)K, we obtain:

r(π, s)q(π, s) = max
i, xe, xd,h

Ah1−α − pHh− i− ϕ(i)− xe − xd +
(
i− δK − ηkM(π, s)σK

)
q(π, s)

+ µπ(π)qπ +
(σ2

S − 2ϑσSσK + σ2
K)s

2

2
qss

+
[
µs(π, s) + ϑσSσK − σ2

K − (ηsM(π, s)ϑσS − ηkM(π, s)σK)
]
sqs

+ λ(π)Exd [
η(π, s;Z,xe)

(
q(πJ , sJ )(1−N(xe)(1− Z))− q(π, s)

)]
.

Note that xd = 0 as no firm spends on public mitigation. The FOCs for i and xe are

q(π, s) = 1 + ϕ′(i(π, s)) , (OD.32)

1 = −λ(π)Exd [
(1− Z)η(π, s;Z,xe)q(πJ , sJ )N ′(xe)

]
, (OD.33)

9Recall that s is a mean-reverting process. Because π = 0 and π = 1 are absorbing states, we can obtain
the boundary conditions at π = 0 and π = 1 by substituting π = 0 and π = 1 into (OD.27)-(OD.31).

O-21



We have a new FOC for the firm’s fossil fuel usage, h, which is

(1− α)Ah(π, s)−α = pH . (OD.34)

In equilibrium, the aggregate scaled fossil fuel, h(π, s), is constant and given by

h(π, s) =

(
(1− α)A

pH

) 1
α

. (OD.35)

Household’s Optimization Problem. The household maximizes the value function Jt.
We show that the value function is Jt = J(Wt, πt, st) is given by

J(W,π, s) =
1

1− γ
(u(π, s)W )1−γ , (OD.36)

where u(π, s) is a welfare measure to be determined. The HJB equation is given by

0 = max
C,Γ, Xe, Xd

f(C, J) + µπ(π)Jπ + λ(π)

∫ 1

0

[
J
(
WJ , πJ , sJ

)
− J(W,π, s)

]
ξ(Z;xd)dZ

+ [r(π, s)W + (µQ(π, s)− r(π, s))Γ− C] JW + µs(π, s)Js +
(σ2S − 2ϑσSσK + σ2K)s2Jss

2

+

((
q(π,s)−sqs(π,s)

q(π,s) σK

)2
+ 2ϑq(π,s)−sqs(π,s)

q(π,s)
sqs(π,s)
q(π,s) σKσS +

(
sqs(π,s)
q(π,s) σS

)2)
Γ2JWW

2

+

(
sqs(π, s)

q(π, s)
(σ2S − ϑσKσS) +

q(π, s)− sqs(π, s)

q(π, s)
(ϑσSσK − σ2K)

)
ΓsJW s . (OD.37)

Next, we show that by optimally choosing a tax on capital stock, a tax on fossil fuel usage,
and a tax on investment, the government can attain the first-best outcome.

OD.3 Optimal Taxation in Market Economy Restores First-Best

In this appendix, we use the second formulation of optimal taxes in the main text, where the
planner taxes a firm’s fossil fuel usage and investment if they exceed the respective first-best
levels. Anticipating that all three taxes are Markovian in s and π, we write these tax rates as
τx(π, s), τh(π, s), and τ i(π, s). Applying Ito’s Lemma to firm value Q(Kt, πt, st) = q(πt, st)Kt

and using the SDF Mt given in (26), we obtain the following HJB equation for q(πt, st):

r(π, s)q(π, s) = max
i, xe, xd,h

Ah1−α − τx(π, s)− τh(π, s)(h− h)−τ i(π, s) [i+ ϕ(i)− (i+ ϕ(i))]

− pHh− i− ϕ(i)− xe − xd +
(
i− δK − ηkM(π, s)σK

)
q(π, s)

+
[
µs(π, s) + ϑσSσK − σ2

K − (ηsM(π, s)ϑσS − ηkM(π, s)σK)
]
sqs

+
(σ2

S − 2ϑσSσK + σ2
K)s

2

2
qss + µπ(π)qπ

+ λ(π)Exd [
η(π, s;Z,xe)

(
q(πJ , sJ )(1−N(xe)(1− Z))− q(π, s)

)]
.

(OD.38)

As in our baseline model, firms have no incentives to spend on disaster distribution adaptation:
xd = 0. The FOC for xe is the same as (OD.33) for the market economy without taxes
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(Subsection OD.2). The FOC for h is given by (1 − α)Ah(π, s)−α = pH + τh(π, s) and the
FOC i is given by q(π, s) = (1 + ϕ′(i(π, s))) (1 + τ i(π, s)).

Next, we show that the household’s value in the market economy with taxes J(Wt, πt, st)
(Subsection 8.3) equals that in the first-best economy (Subsection 8.2). Using the equilibrium
result in the market economy: Wt = q(πt, st)Kt, wewrite J(Wt, πt, st) = J(q(πt, st)Kt, πt, st).

Combining the investment FOC, q(π, s) = (1 + ϕ′(i(π, s))) b(π,s)
b(π,s)−sbs(π,s)

, with the consump-

tion FOC, c(π, s) = ρψu(π, s)1−ψq(π, s) = (ρq(π, s))ψ [u(π, s)q(π, s)]1−ψ, we obtain:

c(π, s) =

[
ρ(1 + ϕ′(i(π, s)))

b(π, s)

b(π, s)− sbs(π, s)

]ψ
[u(π, s)q(π, s)]1−ψ . (OD.39)

Using b(π, s) = u(π, s)q(π, s) and the resource additivity condition, we obtain:

b(π, s) = [Ah(π, s)1−α − τx(π, s)− τh(π, s)(h(π, s)− h(π, s))−τ i(π, s) [i(π, s) + ϕ(i(π, s))− (i(π, s) + ϕ(i(π, s)))]

−pHh(π, s)− i(π, s)− ϕ(i(π, s))− xe(π, s)]1/(1−ψ)
[
ρ(1 + ϕ′(i(π, s)))

b(π, s)

b(π, s)− sbs(π, s)

]−ψ/(1−ψ)
.(OD.40)

Under optimal taxes, (OD.40) is the same as the investment FOC, given in (OD.28), in the
first-best economy. This is because (OD.40) summarizes both the consumer’s and the firm’s
FOCs in the market economy with optimal taxes.

OD.4 Asset Prices in the Planner’s First-best Economy

We derive asset-pricing implications in the first-best economy. Using Ito’s Lemma, we obtain:

dst = d

(
St
Kt

)
=
dSt
Kt−

− St−dKt

K2
t−

+
St−dK

2
t

K3
t−

− < dSt, dKt >

K2
t−

= µs(πt−, st−)dt+ st−
[
σSdWS

t − σKdWK
t +Nt−(1− Z)dJt

]
, (OD.41)

where µs(πt−, st−) = ht−−(it− − δK + δS − σ2
K + ϑσKσS) st− . Duffie and Epstein (1992) show

that the SDF {Mt : t ≥ 0} implied by the planner’s solution is given by:

Mt = exp

[∫ t

0

fV (Cs, Vs) ds

]
fC(Ct, Vt) . (OD.42)

Using the FOC for investment, the value function, and the resource constraint, we obtain:

fC(C, V ) =
1

1 + ϕ′(i(π, s))

b(π, s)− sbs(π, s)

b(π, s)
b(π, s)1−γK−γ =

1

q(π, s)
b(π, s)1−γK−γ ,(OD.43)

and

fV (C, V ) =
ρ

1− ψ−1

[
(1− ω)C1−ψ−1

((1− γ))ω−1 V −ω − (1− γ)

]
= −ϵ(π, s) , (OD.44)

where ϵ(π, s) = −ρ(1−γ)
1−ψ−1

[(
c(π,s)
b(π,s)

)1−ψ−1 (
ψ−1−γ
1−γ

)
− 1

]
.

O-23



Using Ito’s Lemma and the optimal allocation rules, we obtain

dMt

Mt−
= −ϵ(π, s)dt− γ

[
(i(π, s)− δK) dt+ σKdWK

t

]
+

[
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

]
µπ(π)dt

+

[
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)

] [
(µs(π, s) + sγ(σ2K − ϑσSσK))dt+ σSdWS

t − σKdWK
t

]
+
γ(γ + 1)

2
σ2Kdt+

(σ2S − 2ϑσSσK + σ2K)s2

2

[
(1− γ)

(
bss
b

− γb2s
b2

− bs
b

qs

q

)
− qss

q
+

2q2
s

q2

]
dt

+ [η(π, s;Z,xe)− 1] dJt ,

where η(π, s;Z,xe) = q(π,s)
q(πJ ,sJ )

(
b(πJ ,sJ )
b(π,s)

)1−γ

(1−N(xe(π, s))(1−Z))−γ and sJ = s
1−N(xe(π,s))(1−Z)

is the post-jump ratio carbon-productive-capital ratio s.
As the expected percentage change of Mt equals −rt per unit of time (Duffie, 2001), we

obtain the following expression for the interest rate:

r(π, s) = ρ+ ψ−1 (i− δK)−
γ(ψ−1 + 1)σ2K

2
−
[
(1− ψ−1)

bπ
b

− qπ
q

]
µπ(π)

−
[
(1− γ)

bs
b
− qs

q

]
(µs(π, s) + sγ(σ2K − ϑσSσK))− λ(π)

[
Exd

(η(π, s;Z,xe))− 1
]

+
(
ψ−1 − γ

) [
(h− δSs)

bs
b
+
σ2Ss

2

2

(
bss
b

− γb2s
b2

)
+ (1− γ)ϑσKσSs

bs
b

]
−

(σ2S − 2ϑσSσK + σ2K)s2

2

[
(1− γ)

(
bss
b

− γb2s
b2

− bs
b

qs

q

)
− qss

q
+

2q2
s

q2

]

− λ(π)

ψ−1 − γ

1− γ

1− Exd

((1−N(xe)(1− Z))b
(
πJ , sJ

)
b(π, s)

)1−γ
 .

Applying Ito’s Lemma to Q(K, π, s) = q(π, s)K, we obtain the PDE for Tobin’s q, q(π, s):

r(π, s)q(π, s) = Ah1−α − pHh− i− ϕ(i)− xe − xd +
(
i− δK − ηkM(π, s)σK

)
q(π, s) + µπ(π)qπ

+
[
µs(π, s) + ϑσSσK − σ2K − (ηsM(π, s)ϑσS − ηkM(π, s)σK)

]
sqs +

(σ2S − 2ϑσSσK + σ2K)s2

2
qss

+ λ(π)Exd [
η(π, s;Z,xe)

(
q(πJ , sJ )(1−N(xe)(1− Z))− q(π, s)

)]
, (OD.45)

where

ηkM(π, s) = γσK +

[
(1− γ)

sbs(π, s)

b(π, s)
− sqs(π, s)

q(π, s)

]
(σK − ϑσS) (OD.46)

and

ηsM(π, s) = γσK +

[
(1− γ)

sbs(π, s)

b(π, s)
− sqs(π, s)

q(π, s)

](
σK − σS

ϑ

)
. (OD.47)

Finally, using the equilibrium conditions q(π, s) = q(π, s) and xe(π, s) = xe(π, s), we write

dQt +Dt−dt

Qt−
=

(
µQ(πt−, st−) + λ(πt−)

(
QJ
t

Qt−
− 1

))
dt+ σKdWK

t

+
st−qs(πt−, st−)

q(πt−, st−)

[
σSdWS

t − σKdWK
t

]
+

(
QJ
t

Qt−
− 1

)
(dJt − λ(πt−)dt) ,
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where
QJ

t

Qt−
=

(1−N(xe
t−)(1−Z))q(πJ

t ,s
J
t−)

q(πt−,st−)
and

µQ(πt−, st−) = r(πt−, st−) + ηkM(πt−, st−)σK + (ηsM(πt−, st−)ϑσS − ηkM(πt−, st−)σK)
st−qs(πt−, st−)

q(πt−, st−)

+ λ(πt−)Exd
t−

[
η(πt−, st−;Z,x

e
t−)

(
1− QJ

t

Qt−

)]
. (OD.48)

The market risk premium is given by

rp(πt−, st−) = ηkM(πt−, st−)σK + (ηsM(πt−, st−)ϑσS − ηkM(πt−, st−)σK)
st−qs(πt−, st−)

q(πt−, st−)

− λ(πt−)Exd
t−

[(
η(πt−, st−;Z,x

e
t−)− 1

)(QJ
t

Qt−
− 1

)]
. (OD.49)
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