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Abstract 

Measuring environmental regulation’s effect on firm competitiveness is central to designing 
optimal policies. Existing studies document significant negative effects of air pollution 
regulations on manufacturing competitiveness as measured by total factor productivity 
(TFP). A separate literature finds that air pollution lowers TFP through its ambient effect on 
workers’ physical and mental health and cognition. Extant empirical measures reflect some 
combination of the competitiveness and ambient effects and only under specific 
circumstances will they reflect the average policy effect across all firms. We develop a 
boundary-discontinuity-difference-in-differences approach to isolate the competitiveness 
effect: both regulated and unregulated firms adjacent to each other enjoy the ambient effect 
via spillovers but only regulated firms suffer the competitiveness effect. We apply the 
approach to a major air pollution regulation in China. The traditional approach to estimating 
the regulation’s effect yields a 3.75% TFP decline and net policy cost of USD 21.2 billion. The 
true competitiveness effect is 6.40% implying an ambient effect of 2.65% among regulated 
firms. The true cost of the policy is lower (about USD 10.4 billion) because proximate non-
regulated firms also enjoy the ambient effect. 
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1. Introduction 

Theoretically, binding environmental regulations can raise or lower firms’ costs. 
Regulations impose compliance costs on firms including capital costs, such as 
pollution abatement equipment, and labor costs, such as compliance personnel. On 
the other hand, regulations may increase productivity if it leads firms to rationalize 
their production processes or spurs innovations that lower costs or improve quality 
(Porter, 1991).1 The direction and magnitude of the competitiveness effect is 
important for several reasons. Most directly, it is an important input in the cost-
benefit analysis of environmental policies. Regulations involve implementation costs 
but also impose costs on firms if firm competitiveness is lowered. Second, if 
environmental regulations affect firms’ costs then they affect a country’s trade 
position and balance of payments vis-a-vis other countries. Third, from a political 
economy perspective, the answer to the question determines whether firms will 
resist or encourage the enactment of environmental regulations and how strongly. 

Given the theoretical uncertainty about the direction of the competitiveness effect, 
empirical estimates are critical. Greenstone et al. (2012) estimate the effects of the 
1970 US Clean Air Act Amendments (CAAA) on manufacturing productivity using a 
large plant-level data set from 1972 to 1993 (Berman and Bui (2001) and 
Gowrisankaran et al. (2020) estimate effects in particular industries).2 The Act 
imposed regulations on plants not in compliance with pollution standards across 
multiple pollutants. Comparing non-attainment with attainment plants, the paper 
finds a 2.6% decline in total factor productivity (TFP) among surviving plants that 
were in non-attainment due to any pollutant.3 The other notable estimate of a 
competitiveness effect is He et al. (2020) for water pollution in China using an 
increase in regulatory stringency in 2003. Using data from 2000 to 2007, the paper 
finds a 24% reduction in TFP for firms subject to monitoring versus those not (Wang 
et al. (2018) estimate effects for water pollution in a region of China). 

The typical approach to quantifying a competitiveness effect in the case of air 
pollution is a difference-in-differences (DD) estimate comparing treatment firms 
subject to the regulation to control firms that are not. A separate literature (Graff 
Zivin and Neidell, 2012; Chang et al., 2019; He et al., 2019; Fu et al., 2021) estimates 
how air pollution reduces output due to effects on the physical and mental stamina 
of workers or work absences. This implies that regulations that reduce air pollution 

                                                           
1 The original evidence for this “Porter Hypothesis” was case-study based (Porter and van der Linde, 
1995). Later formal justifications derive from regulations addressing X-inefficiency (Leibenstein, 1966), 
strategic trade models (Simpson and Bradford, 1996), and regulation addressing principal-agent 
inefficiencies between owners and management (Ambec and Barla, 2002). 
2 Other studies examine regulatory effects on innovation (e.g., Jaffe and Palmer (1997)). 
3 We do not find evidence effects on firm survival, so such an adjustment is unnecessary in our setting. 
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will result in productivity improvements. Because air pollution drifts spatially, these 
productivity improvements accrue not to a specific firm but rather to all firms in the 
proximate area regardless of whether they must comply with the regulations. We 
call this the “ambient effect”. The standard DD approach will estimate some 
combination of the competitiveness and ambient effects (which we term the 
“combined effect”) and understate the competitiveness effect (in absolute value) if 
interpreted as such. 

Figure 1 illustrates these different effects. The competitiveness effect is displayed 
along the top path. This path reflects the net effect of the two forces – compliance 
costs and process improvements. The bottom path of the diagram shows the ambient 
effect – the extent to which pollution reductions increase output via lower morbidity, 
lower mortality, greater stamina, and improved cognition. The sum of these two 
effects equals the combined effect (shown on the right-hand side) and is what is 
measured in previous papers. 

[Insert Figure 1 here] 

Decomposing the combined effect into its two components is necessary in achieving 
socially-optimal air pollution reductions. Consider an environmental regulation 
aimed at reducing manufacturing emissions and suppose it imposes a net regulatory 
cost on regulated firms. The regulation creates a competitiveness effect, which is a 
private cost, and an ambient effect, which is a public benefit. Any associated air 
pollution reductions will convey the benefit of the ambient effect to all firms in and 
near the targeted areas. However, the cost of achieving the reduction (the 
competitiveness effect) is borne only by the firms that must comply with the 
regulation. To determine the optimal level of regulation, the competitiveness effect 
should be included as a cost (but applied only to regulated firms) and the ambient 
effect should be included as a benefit (applied to all proximately-located firms). 

For example, US EPA regulations often target specific firms. In setting pollution 
levels optimally, the private costs (the competitiveness effect) must be applied only 
to the targeted firms while the public spillover (ambient effect) should be applied to 
all proximate firms. Interpreting the combined effect as a competitiveness effect also 
has relevance for the theoretical debate concerning the Porter Hypothesis. For 
example, Greenstone et al. (2012) estimate a small (1.7 to 2.2%) productivity increase 
for firms in non-attainment for CO in response to the CAAA. This could be 
consistent with the Porter Hypothesis, but if the ambient effect embedded in their 
estimate exceeds 2.2% this would be inconsistent. From a political economy 
perspective, prospective regulated firms will base their support of a regulation on 
the combined effect while nearby unregulated firms will favor based on the ambient 
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effect. This also means that air pollution restrictions are less costly in regions with 
high firm densities. 

If all firms are included, then DD estimates will provide the average policy 
(competitiveness and ambient) effect across all firms. Generally, not all data will be 
included. In some cases, data may not be available for all firms. Even if all data is 
available, only firms present before and after the policy change will identify the 
combined effects. In this case, the DD estimates will only be representative of all 
firms if the proportion of treatment and control firms (and geographic locations of 
control firms vis-à-vis treatment regions) in the estimated subsample are 
representative of the full sample. Otherwise, unbiased average policy effects can 
only be obtained by isolating the competitiveness and ambient effects and then 
grossing up the effects given the number and geographic placement of all firms. We 
illustrate this later in our setting and find that net policy effects based on the 
decomposition of competitiveness and ambient effects is quite different than that 
based on naïve DD estimates. 

To disentangle the competitiveness and ambient effects we develop a boundary-
discontinuity-difference-in-differences (BD-DD) approach and apply it to a major air 
pollution regulation in China. We identify pairs of firms that are geographically 
close to each other (ten kilometers or less), some of which are subject to the 
regulation (the treatment group) and others of which are not (the control group). We 
then compare the response of the two groups to the advent of the regulation (the 
treatment). Since the control and treatment groups are in close proximity, they 
experience the same air pollution concentrations both before and after the policy 
implementation and differ only in the application of the regulation after its advent. 
This differs from the typical DD estimates which use treatment and control firms 
regardless of distance from each other. In this case, the two groups experience 
different ambient pollution levels with the advent of the regulation, in addition to 
the difference in regulatory compliance. Figure 2 illustrates our approach to 
identifying the competitiveness effects using a heat map of PM2.5 pollution 
concentrations. It shows two example borders (one with low and one with moderate 
pollution). In both examples, restricting the maximum distance from the border (and 
therefore between firms in a pair) to 10 kilometers or less ensures that the pollution 
is similar on both sides of the border while distances of 50 kilometers or more does 
not. 

[Insert Figure 2 here] 

We apply our approach to a regulation known as the “Plan of Key Cities Designation 
for Air Pollution Control” (KCAPC) which imposed air pollution controls on 
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selected cities.4 We apply the BD-DD approach to estimate the policy’s 
competitiveness effect on TFP in China’s manufacturing sector. We also apply the 
traditional DD approach to estimate the policy’s combined effect. The difference 
between these two equals the productivity improvements due to ambient pollution 
reductions from the policy. The standard DD approach estimates a combined effect 
of -3.75%. The BD-DD approach estimates a competitiveness effect of -6.40% 
implying that the ambient effect is a 2.65% productivity increase for firms in 
treatment cities.5 Thus, the direct regulatory costs on firms would be understated by 
2.65 percentage points or 41.4% using the pre-existing DD approach. These estimates 
apply to firms in continued operation; however, we find similar combined and 
competitiveness effects for firms that exit post-policy as we do for the whole sample. 
The estimates also assume no price effects (we must use a measure of revenue rather 
than physical output and therefore price changes in response to the policy would 
confound the estimates). We provide some evidence that price effects are not 
significant. We also provide evidence that the competitiveness effects are not 
amplified by agglomeration effects but the ambient effects are compounded by the 
treatment-firm density in a local area. 

This paper is most closely related to Greenstone et al. (2012). It differs in that the 
focus is on developing a method to decompose the combined effect into the 
competitiveness and ambient effects. Also closely related to our work is He et al. 
(2020). It employs a regression discontinuity (RD) approach comparing the 
productivity of firms immediately upstream of a water quality monitoring station to 
those immediately downstream. Upstream firms are affected by the regulation while 
downstream firms are not because upstream pollution is measurable while 
downstream is not. There are two key differences between this paper and ours. First, 
it is unclear whether there are significant productivity effects of cleaner water (the 
equivalent of the ambient effect). To the extent that polluted water needs to be 
purified before it can be used as a productive input, this “ambient” effect would be a 
byproduct of the regulation.6 Second, but related, the purpose of He et al. (2020) is 
not to disentangle the competitiveness and ambient effects. 

More broadly, our paper relates to three areas of literature. The first is the literature 
estimating the effects of air quality regulations on competitiveness, in particular 
Greenstone et al. (2012). As that paper notes, there is little other empirical evidence 
concerning the competitiveness effect of air pollution regulations on productivity 

                                                           
4 In Chinese, the regulation is named “大气污染防治重点城市划定方案.” 
5 Control firms in close proximity to treatment-region borders also experience ambient effects as we 
quantify later. 
6 Firms immediately upstream of a monitoring station might or might not experience an “ambient” 
effect. It depends on whether the purified water is re-used in their production processes versus 
floating downstream. This differs from our setting where pollution affects all firms in close proximity. 
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except for specific industries (Gollop and Roberts, 1983; Ryan, 2012). We contribute 
to this area of literature by providing a method to isolate the competitiveness effect 
from the ambient effect in an air pollution context. 

The second area is the literature quantifying the direct effects of air pollution on 
productivity – the ambient effect. This area of literature began by focusing on 
specific occupations or industries (Graff Zivin and Neidell, 2012; Chang et al., 2016; 
Adhvaryu et al., 2019; Chang et al., 2019; He et al., 2019) and then expanded to 
estimate nationwide or supra-national effects (Dechezleprêtre et al., 2018; Fu et al., 
2021). These papers motivate the need to develop a framework for decomposing the 
combined effect into the competitiveness and ambient effects. In particular, Fu et al. 
(2021) shows that pollution has significant effects on TFP nationwide in China’s 
manufacturing sector, emphasizing the need to account for an ambient effect in 
evaluating China’s environmental regulations. 

Third, there is a large literature that attempts to explain productivity dispersion 
among firms (Bartelsman and Doms (2000) and Syverson (2011) provide surveys). 
Environmental regulation is a contributing factor. However, quantifying this as the 
combined effect masks variation because there are two underlying contributions that 
are being averaged. The competitiveness effect applies to firms subject to a 
regulation while the ambient effect will be experienced by other firms depending on 
their density and proximity to regulated regions. 

The remainder of the paper proceeds as follows. The next section describes a 
conceptual framework for our analysis. Section 3 describes the institutional 
background and Section 4 our estimation approach. Section 5 describes the data to 
which we apply the estimation approach. Section 6 discusses identification and 
presents the results. We conclude in Section 7. 

2. Conceptual framework 

Our conceptual model closely follows that in Greenstone et al. (2012), which shows 
how environmental regulations affect firm productivity. We augment their model to 
separate the combined effect into the competitiveness and ambient effects. We 
assume a manufacturing firm (also plant)7 𝑖𝑖 produces a product according to a 
constant-returns-to-scale Cobb-Douglas production function employing 𝐿𝐿� units of 
labor and 𝐾𝐾� units of capital: 

𝑄𝑄𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐿𝐿�𝑖𝑖𝛼𝛼𝐾𝐾�𝑖𝑖1−𝛼𝛼, (1) 

where 𝑄𝑄 is the firm’s output and 𝐴𝐴 is a Hicks-neutral technology shifter. 𝐿𝐿� and 𝐾𝐾� are 
production-effective labor and capital – the quantity actually used in production. 
                                                           
7 Only 5.2% of firms in our data set are multi-plant and we exclude them from estimation. 
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Observed units of the two inputs (𝐿𝐿 and 𝐾𝐾) may differ because regulation may 
require firms to employ ineffective inputs in the production process such as 
compliance officers or pollution-reduction equipment. Observed units are related to 
effective units by: 

𝐿𝐿�𝑖𝑖 = 𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝐿𝐿𝑖𝑖 (2a) 
𝐾𝐾�𝑖𝑖 = 𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)𝐾𝐾𝑖𝑖, (2b) 

where 𝜆𝜆𝐿𝐿 and 𝜆𝜆𝐾𝐾 are proportionality factors that reflect the regulatory effect on input 
usage. 𝑟𝑟 denotes regulatory stringency and Ω the ambient pollution faced by the firm. 
The direct effect of the regulation on 𝜆𝜆𝐿𝐿 and 𝜆𝜆𝐾𝐾 is the competitiveness effect which 
could be positive or negative: 𝜕𝜕𝜆𝜆𝐿𝐿 𝜕𝜕𝜕𝜕⁄ ≤≥ 0 and 𝜕𝜕𝜆𝜆𝐾𝐾 𝜕𝜕𝜕𝜕⁄ ≤≥ 0. At the same time, 
more stringent regulations may reduce pollution 𝜕𝜕Ω 𝜕𝜕𝜕𝜕⁄ ≤ 0 and generate an 
ambient effect. This may indirectly increase input effectiveness: 𝜕𝜕𝜆𝜆𝐿𝐿 𝜕𝜕Ω⁄ ≤ 0 and 
𝜕𝜕𝜆𝜆𝐾𝐾 𝜕𝜕Ω⁄ ≤ 0. To determine the effects on productivity, substitute into the production 
function: 

𝑄𝑄𝑖𝑖 = 𝐴𝐴𝑖𝑖[𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝐿𝐿𝑖𝑖]𝛼𝛼[𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)𝐾𝐾𝑖𝑖]1−𝛼𝛼 = 𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝛼𝛼𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)1−𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐾𝐾𝑖𝑖1−𝛼𝛼. (3) 

The firm’s TFP is output divided by weighted inputs: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑄𝑄𝑖𝑖
𝐿𝐿𝑖𝑖
𝛼𝛼𝐾𝐾𝑖𝑖

1−𝛼𝛼 = 𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝛼𝛼𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)1−𝛼𝛼. (4) 

Taking the derivative of logged TFP with respect to 𝑟𝑟 gives the combined effect of 
regulation on TFP: 

𝜕𝜕𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)
𝜕𝜕𝜕𝜕

= �𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝜕𝜕

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

� + �𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω

� 𝜕𝜕Ω
𝜕𝜕r

. (5) 

The combined effect equals the effect on firm competitiveness (the first bracketed 
term) plus the regulation’s effect on productivity via ambient pollution (the second 
bracketed term). To the extent that 𝜕𝜕Ω 𝜕𝜕𝜕𝜕⁄ < 0, interpreting the overall estimate as 
the competitiveness effect will understate it (in absolute value). Our BD-DD 
approach eliminates the second bracketed term because it is differenced out by 
comparing firms that are exposed to the same pollution concentration levels (Ω). 

Since we are unable to measure quantities we must rely on revenue measures of 
output. If regulations affect marginal cost and firms have market power our 
revenue-based measure of productivity may be confounded by changes in margins 
in response to marginal cost changes. Marginal cost, as derived in Appendix A by 
augmenting Greenstone et al. (2012), is: 

𝑀𝑀𝑀𝑀𝑖𝑖 = 1

𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿�𝑟𝑟,Ω�
𝛼𝛼
𝜆𝜆𝐾𝐾�𝑟𝑟,Ω�

1−𝛼𝛼 𝜙𝜙𝑤𝑤𝑖𝑖
𝛼𝛼𝑟𝑟𝑖𝑖1−𝛼𝛼, (6) 
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where 𝜙𝜙 is a constant that depends on 𝛼𝛼. Marginal cost is decreasing in both 𝜆𝜆𝐿𝐿 and 
𝜆𝜆𝐾𝐾 so that regulations requiring more compliance-related inputs (and therefore a 
greater gap between observed and effective inputs) will increase marginal cost. At 
the same time, marginal cost is increasing in Ω so that pollution reductions due to 
the regulation will decrease marginal cost. In the absence of market power, such 
changes in marginal cost will not bias the estimates as revenue-based productivity 
will scale one-for-one with quantity-based productivity. In the presence of market 
power, margins could either increase or decrease as marginal cost changes. If this is 
the case, then estimates using revenue-based productivity will not reflect effects on 
quantity-based productivity. We check robustness to these price effects when we 
present our results. 

3. Institutional background 

On September 5, 1987, the State Environmental Protection Administration (SEPA) 
issued the “Air Pollution Prevention and Control Law of the People's Republic of 
China”. The policy, implemented on January 1, 1988, specified air pollution 
reductions for 47 “key” cities. The law was regarded as being of limited effectiveness 
because it specified no formal pollution targets or monitoring mechanism.8 As a 
consequence, it was revised in 1995 and again in 2000. We focus on this last revision 
issued on April 29, 2000. 

On December 2, 2002 as a part of implementing this last revision, SEPA formally 
issued the KCAPC policy. It identified 113 cities that were subject to regulations with 
the goal of meeting air quality targets by 2005.9 The target was China’s Class II air 
quality standard (formally designated GB3095-2000) with respect to six air pollutants: 
sulfur dioxide (SO2), nitrogen dioxide (NO2), total suspended particulate (TSP), 
ozone (O3), carbon monoxide (CO), and particulate matter smaller than 10 
micrometers in diameter (PM10).10 The standard specified maximum average annual, 
daily and hourly concentrations of these pollutants as shown in Appendix B. 

The 113 cities subject to regulation under KCAPC were among the 338 cities with air 
pollution monitoring stations in 2000. They were chosen based on the city not 
meeting the GB3095-2000 standard in 2000 along with other criteria, such as whether 
the city was a national key-tourism or culturally-protected city, and its demographic 
and economic conditions. These are the treatment cities and all other cities 
(numbering 225) are control cities. The cities are defined by the four-digit level of the 
                                                           
8 See http://www.gov.cn/gongbao/content/2000/content_60224.htm (in Chinese). 
9 A detailed description is at http://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_172141.htm 
(in Chinese). 
10 The ambient air quality standard GB3095-2000 has three classes. Class II applies to residential, 
commercial, and traffic activities located in general industrial and rural areas. Class I is the strictest 
and applies to scenic areas and nature preserves. Class III is the least restrictive and applies to 
specialized industrial areas. 

http://www.gov.cn/gongbao/content/2000/content_60224.htm
http://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_172141.htm
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Administrative Division Codes of the PRC.11 Appendix C shows the locations of the 
treatment and control cities. 

The KCAPC policy did not go into effect until January 6, 2003 when SEPA issued its 
formal implementation.12 We therefore take 2003 as the policy implementation 
threshold for our analysis. After the policy went into effect a city continued to be 
subject to regulation or not for the duration of our sample period.13 The treatment 
cities were subject to oversight and restrictions while the control cities were not. The 
restrictions included promoting clean-energy use, barring high-polluting fuels, 
developing co-generation and central heating, controlling coal pollution, restricting 
motor-vehicle emissions, controlling construction and transportation dust, shutting 
down high-polluting plants, and requiring firms to establish environmental 
management systems. 

SEPA supervised implementation at the national level. The policy targets were 
incorporated into the evaluation and promotion of government officials at the local 
level and treatment cities were subject to frequent inspections. Both the national and 
local governments had enforcement powers to ensure compliance. Local city officials 
were required to regularly release information on the concentrations of each of the 
pollutants and their performance influenced promotions and demotions. The 
KCAPC policy achieved significant emissions reductions. By 2005, 48 of the 
treatment cities had met the Class II standard. 

4. Estimation approach 

4.1 Overall approach 

We first use the DD approach to estimate the combined effect for comparison to the 
previous literature. We then isolate the competitiveness effect using our BD-DD 
approach (see Figure 1 for the correspondence between policy effects and 
estimation). The difference between these estimates equals the ambient effect. To 
illustrate our approach, consider four firms in two cities A and B (Figure 3). City A is 
subject to the KCAPC policy while city B is not. A DD estimate comparing firms 2 
and 4 quantifies the combined effect (competitiveness plus ambient effect). Firm 2 

                                                           
11 The six-digit administrative code is published by the NBS’ Administrative Division: 
http://www.stats.gov.cn/tjsj/tjbz/xzqhdm/201401/t20140116_501070.html (in Chinese). The first 
two digits identify one of the 31 provinces and the third and fourth digits the prefecture or major city. 
12 This is called “Notice on the Work of Air Pollution Prevention and Control in Key Cities to Meet the 
Deadline.” A detailed description is at 
http://www.mee.gov.cn/gkml/zj/bgt/200910/t20091022_173815.htm (in Chinese). 
13 The treatment cities’ performance was formally evaluated in 2005. In 2005, the KCAPC’s goals 
switched to a different standard (based on emissions rather than concentrations). The treatment cities, 
regardless of whether they had met the Class II standard by 2005 or not, continued to be subject to 
controls though the end of the sample period while the control cities were not. 

http://www.stats.gov.cn/tjsj/tjbz/xzqhdm/201401/t20140116_501070.html
http://www.mee.gov.cn/gkml/zj/bgt/200910/t20091022_173815.htm
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suffers from the competitiveness effect but also enjoys the ambient effect, while Firm 
4 experiences neither given its far distance from the treatment city.14 

[Insert Figure 3 here] 

A BD-DD estimate comparing firms 1 and 3 isolates the competitiveness effect. Firm 
3 enjoys the ambient effect because it is close to the boundary of the treatment city 
but does not bear the competitiveness effect. Firm 1 benefits from the ambient effect 
but must also bear the competitiveness effect. The difference between the DD and 
BD-DD estimates equals the ambient effect. 

We next describe the econometric model corresponding to the extant DD approach 
which estimates the combined effect. We then describe the econometric model for 
the BD-DD approach for isolating the competitiveness effect. 

4.2 Combined effect (DD estimation) 

Previous estimates of the effects of air pollution regulations on productivity utilize a 
DD approach with regulated firms as the treatment group and unregulated as the 
control group. We use this same approach to estimate the combined effect of KCAPC 
on productivity. For this estimation we include all firms in the sample that have data 
in at least one year before the policy and at least one year after:15 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) = 𝛽𝛽𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 + 𝜂𝜂𝑖𝑖𝐶𝐶𝐶𝐶 + 𝜃𝜃𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 , (7) 

where 𝑖𝑖 indicates firm, 𝑡𝑡 indicates year, and 𝑐𝑐 indicates city and we index the 
parameters by 𝐶𝐶𝐶𝐶 to indicate combined effect. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 is firm 𝑖𝑖’s productivity 
in year 𝑡𝑡. The firm fixed effects �𝜂𝜂𝑖𝑖𝐶𝐶𝐶𝐶� capture time-persistent firm characteristics that 
affect productivity so that the combined effect is identified from inter-temporal 
variation within firms.16 𝑋𝑋𝑖𝑖𝑖𝑖 includes fixed effects which vary by specification 
(region-by-year or province-by-year and industry-by-year) and in some 
specifications weather controls. The region- or province-by-year fixed effects control 
for geographic-specific unobservables within a year and the industry-by-year fixed 

                                                           
14 Previous DD estimates, and ours, include firms 1 and 3 in this estimation even though they are not 
separated far enough geographically to experience the difference in pollution concentrations brought 
about by regulation. They likely affect the estimates modestly because samples usually involve large 
numbers of firms so that their influence is small in relative terms. Footnote 41 provides a back-of-the-
envelope quantification of this in our setting. 
15 We do so because firms that appear only before or after do not contribute to identifying the policy 
effects (firm fixed effects absorb their effects) and we want the summary statistics to reflect only data 
that aids in identification. As we discuss later this is crucial in interpreting the average policy effect 
across all firms. 
16 Since firms rarely change cities (only 0.7% of observations) and rarely change industries (only 1.1% 
using the 4-digit industry code) over the sample period, we do not include city or industry fixed 
effects since they would be nearly collinear with the firm fixed effects. 
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effects control for industry-specific unobservables within a year that affect 
productivity.17 

𝜀𝜀𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 captures firm-year specific shocks to productivity. In our baseline estimates we 
follow Greenstone et al. (2012) in clustering the standard errors by city-year to allow 
for spatial correlation across firms within a city-year, but examine the robustness to 
clustering at the city level which allows for correlations across firms and over time 
within a city. 

The key variables are the two indicators. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡  is set equal to zero prior to the 
imposition of the KCAPC and one after. It captures the pre- versus post-policy 
periods. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 is set to one if the city in which firm 𝑖𝑖 is located is regulated under 
KCAPC and zero otherwise. 𝛽𝛽𝐶𝐶𝐶𝐶 captures the combined effect of the KCAPC policy 
on productivity – the differential effect of the policy on firms subject to its provisions 
versus those not. 

4.3 Competitiveness effect (BD-DD estimation) 

To isolate the competitiveness effect, we embed this DD approach within a boundary 
discontinuity (BD) design that matches firms of opposite types (regulated versus 
unregulated) that are geographically close to each other. In sufficiently close 
proximity, the two types of firms are exposed to the same ambient pollution 
concentrations but only those in regulated areas must incur costs to comply with the 
KCAPC. This estimation exploits the spatial discontinuity in regulations between 
treatment and control cities to estimate the causal effect of regulation on firm 
competitiveness. The BD-DD subsample includes all firms of opposite types that are 
sufficiently close that they experience the same pollution concentrations. Specifically, 
we estimate Equation (7) but restrict the sample to treatment and control firm pairs 
that are in close proximity (𝑖𝑖 ∈ {𝐵𝐵𝐵𝐵}): 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) = 𝛽𝛽𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 + 𝜂𝜂𝑖𝑖𝐶𝐶 + 𝜃𝜃𝐶𝐶𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐶𝐶 , 𝑖𝑖 ∈ {𝐵𝐵𝐵𝐵}. (8) 

𝛽𝛽𝐶𝐶 captures the competitiveness effect of the KCAPC policy on productivity: the 
differential effect of the policy on firms subject to its provisions versus those not but 
facing the same ambient pollution reduction due to the policy.  

The BD aspect of our BD-DD estimation differs slightly from the typical approach, 
which would compare outcomes for all firms within a certain distance on either side 
of a physical boundary between treatment and control areas. Doing so would 
include many firms that do not have a corresponding firm of the opposite type 
(control versus treatment) in close enough proximity that they face similar ambient 

                                                           
17 We divide China into seven geographic regions (North, Northeast, Northwest, East, Central, South, 
and Southwest based on the first digit of the Administrative Division Code as in Zhang et al. (2018). 
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pollution levels. While including these firms would not bias our estimates it would 
add noise and reduce efficiency. To increase the power of our estimates, we include 
only firms that have another firm of the opposite type within a maximum distance. 
Since firms rarely move in the sample (fewer than 0.7% of observations) and both 
firms in a pair must appear before and after the policy, we base the pairs on the 
closest firm over all sample years. 

To illustrate, suppose a treatment firm (A) has a control firm (B) located twelve 
kilometers away. If we impose a maximum distance cutoff of ten kilometers we 
would not include data for the A-B pair in estimation, while if we impose a 
maximum distance cutoff of twenty kilometers we would. However, firm A might 
be four kilometers from the border and firm B eight kilometers. This is also why we 
do not apply an RD approach. For each pair, we must include both the treatment 
and control firm; however, they are not necessarily equidistant from the border 
making it impossible to define a unique distance. An advantage of our approach is 
that it can be applied in settings in which regulations are applied to some but not all 
firms within the same geographic jurisdiction even if there is no defined boundary. 

4.4 Illustrative example 

To illustrate our estimation approach, consider a simple example. Suppose that a 
policy reduces pollution concentration by 5.0% and imposes a competitiveness effect 
of -6.0%. Further, assume that the pollution gradient is 0.05% per kilometer (i.e., 
pollution drifts such that the pollution reduction diminishes by 0.05% per kilometer 
as you move away from a treatment area) and an elasticity of productivity with 
respect to pollution of -0.5. Figure 4a illustrates the policy’s effect on pollution 
concentrations as a function of the distance from the boundary between a treatment 
and control region (with negative distances representing moving further into the 
treatment and positive further into the control region) assuming a dense population 
of firms on both sides. The blue-dashed line shows the pollution reduction due to the 
policy. Treatment firms reduce their emissions such that pollution concentrations 
decline uniformly by 5.0% in response to the policy while those in the control region 
do not reduce their emissions. In the control region, the further from the border 
(more positive distances) the lower the pollution reduction because the spillover 
declines with distance according to a gradient of 0.05% per kilometer. The ambient 
pollution effect reaches zero at 100 kilometers into the control region. 

[Insert Figure 4a here] 

The green solid line in Figure 4a shows the productivity change due to the pollution 
reduction (the ambient effect). Applying the elasticity, productivity improves 
uniformly by 2.5% in the treatment region. In the control region, the ambient 
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productivity effect lessens as you move further from the border (at a rate of 0.025% 
per kilometer) as the strength of the pollution spillover declines, hitting zero at 100 
kilometers. 

Figure 4b shows the combined effect. The solid green line replicates the ambient 
effect as a function of distance from Figure 4a (but rescaled). The small-dashed red 
line shows the competitiveness effect of -6.0%. Only firms in the treatment region 
suffer from the competitiveness effect so it jumps discontinuously from -6.0% to 0% 
at the boundary. 

[Insert Figure 4b here] 

The long-dashed black line shows the combined effect (it coincides with the ambient 
effect in the control region) which is what is observed in the data. The discontinuous 
jump at the border equals the competitiveness effect (-6.0%). The combined effect 
hits zero at 100 kilometers since both the competitiveness and ambient effects are 
zero beyond this. BD-DD estimates based on firms in close proximity to the border 
will yield an unbiased estimate of the competitiveness effect. DD estimates using 
data outside 100 kilometers from the border will equal the average combined effect 
in the treatment region (-3.5%) minus the average combined effect in the control 
region (zero) or -3.5%. This estimate differs from the BD-DD estimates by 2.5% 
which is the average ambient effect. If the DD estimates include all firms then the 
estimate will yield the average policy effect including the ambient effect for control 
firms. If not all firms are included or not all identify the DD estimates (for example, 
some firms are not present both before and after the policy), this will not equal the 
average effect unless the included data is proportional to the number of treatment 
and control firms (including their position relative to the border) in the full data. 

5. Data 

Our estimation combines data on firm productivity, pollution, and weather in China 
from 1998 to 2007. The policy change occurs in 2003. 

5.1 Firm productivity data 

Firm-level output and characteristics data is from the Annual Survey of Industrial 
Firms (ASIF) collected by China’s National Bureau of Statistics (NBS). The survey 
includes all state-owned enterprises (SOEs) regardless of size and all non-SOEs 
whose annual sales exceed CNY 5 million (USD 0.75 million)18 and contains detailed 
information on firm location, accounting measures, and firm characteristics. The 
survey includes only manufacturing firms so our results do not apply to the power 
generation sector or services firms. The survey captures 90.7% of China’s total 
                                                           
18 A 2022 exchange rate of 6.7 is used throughout the paper. 
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manufacturing output in the later years (Brandt et al., 2012). We use the algorithm in 
Brandt et al. (2012) to match firms over time to form an unbalanced panel. This 
matching process is careful and avoids interpreting name changes as different firms. 
The panel is unbalanced because firms enter and exit during the sample period and 
non-SOEs may drop below or rise above the CNY 5 million threshold. We provide 
evidence that our estimates are unlikely to be greatly affected by this threshold when 
we present our results. We also follow Brandt et al. (2012) in converting nominal into 
real values using industry-level price indices. 

We drop observations with missing or unreliable data following the previous 
literature (Cai and Liu, 2009; Brandt et al., 2012).19 These represent 10.3% of 
observations and 7.9% of total manufacturing output. Also following the previous 
literature (Cai and Liu, 2009), we winsorize the top and bottom 0.5% of data based 
on each of the values of output, value added, employment, and capital because of 
the risk that these involve data entry or reporting errors; however, we check 
robustness to including these. Each firm is classified in an industry using the 
Chinese Industry Classification (CIC) code.20 

We use the six-digit administrative code of the firm to assign it to a city and, in turn, 
to the treatment or control group. For the BD-DD analysis, we use the address 
provided in ASIF to determine the firm’s latitude and longitude and use these to 
calculate the distance between firms when locating the nearest firm of the opposite 
type. For most firms, ASIF contains the street address; however, for 16.5% of firms, it 
contains only the county or district. We drop these from the BD-DD sample since 
this is not specific enough to calculate a distance from the nearest firm of the 
opposite type. We drop multi-plant firms (5.2% of the data) because we are unable to 
allocate their productivity to a specific location. 

We use three alternative productivity measures. Our primary measures are TFP 
estimated using the OP (Olley and Pakes, 1996) and LP (Levinsohn and Petrin, 2003) 
methods and intermediate inputs as an instrument. We also check the robustness to 
labor productivity (output per worker) since this is commonly used in the 
environmental literature. We abstract from intermediate inputs and use value added 
as the output measure. ASIF directly reports value added as the firm’s total 
production (including sales and inventory) of all goods produced in the year valued 
at their market prices less the cost of all intermediate inputs employed in producing 

                                                           
19 We drop observations with missing or negative values for output, value added, employment, or 
capital; firms with fewer than eight employees as they may have unreliable accounting systems; and 
firms violating accounting identities such as the components of net assets exceeding total assets or 
current depreciation exceeding cumulative depreciation. 
20 We use the National Economic Industry Classification (GB/T4754-2002) defined by the National 
Bureau of Statistics. This is similar to the US Standard Industrial Classification (SIC) code. 
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them. We face two issues that many other papers have in estimating productivity 
based on manufacturing surveys or censuses. First, if there is market power in either 
the primary or input market and the KCAPC policy affects marginal cost; our use of 
a revenue-based measure of output could be confounded. If prices do not reflect 
market power then monetary- are preferred over quantity-based measures as they 
reflect quality differences (Syverson, 2011). We provide suggestive evidence when 
we discuss our results that margins are unaffected by the KCAPC policy. Second, 
estimates for multi-product firms will be confounded if their product mix is affected 
by the KCAPC policy. Only 1.3% of firms report more than one product so we 
exclude these from the sample. 

Appendix D provides summary statistics for the DD sample which includes 87,933 
firms and 541,887 firm-year observations or 6.2 years of data per firm on average. 
This table includes only firms that aid in identification (present before and after the 
policy change). As we discuss later, this distinction is crucial in calculating the 
average policy effect across all firms. The three productivity measures reveal 
significant variation and are highly correlated with each other.21 Appendix E 
provides summary statistics for the data used in our BD-DD estimation applying a 
maximum distance of ten kilometers between treatment and control firms (our 
preferred distance threshold). Again, this reflects only firms that appear before and 
after the policy change. This sample includes 35,398 unique firms and 224,334 firm-
year observations or 6.3 years of data per firm on average. 

5.2 Pollution data 

Although we are interested primarily in productivity effects, we use two different 
pollution measures to confirm that the KCAPC policy was effective and to check 
whether pollution is similar on the treatment versus control sides of the borders in 
our BD-DD estimation. The first is firm-specific SO2 emissions from the Annual 
Environmental Survey of Polluting Firms (AESPF) of China.22 The second is PM2.5 
concentrations. Although the KCAPC policy did not directly regulate PM2.5, it is the 
only pollution concentration measure which is nationwide in coverage and of 
sufficient geographic specificity. Different air pollution concentrations are highly 
correlated so that results for it provide indirect evidence for other pollutants. PM2.5 
annual concentrations are derived from satellite-based Aerosol Optical Depth (AOD) 
retrieval techniques maintained by the National Aeronautics and Space 

                                                           
21 The Pearson correlation coefficients for the TFP OP and LP measures is 0.79 and for labor 
productivity with respect to TFP OP and LP measures is 0.67 and 0.69, all significant at better than the 
1% level. 
22 The AESPF includes 85% of total emissions volume. The survey covers many different 
environmental measures but we focus on SO2 because the KCAPC directly regulates it. 
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Administration (NASA).23 The concentrations are calculated following van 
Donkelaar et al. (2016) and van Donkelaar et al. (2018). This data has been used in 
other studies of China’s air pollution (Freeman et al., 2019; Greenstone et al., 2021). 
The data are reported in 1- by 1-kilometer grids which we aggregate to the city-level 
by averaging across grids. 

5.3 Weather data 

In some specifications we include data for weather because it has been found to 
affect firm productivity (Zhang et al., 2018) and also affects pollution levels. We 
include this only as a robustness check because it will only confound our estimates if 
weather conditions are correlated with the policy implementation. We obtain daily, 
station-level weather variables from the National Meteorological Information Centre 
of China.24 We aggregate the data to the city level using the inverse-distance 
weighting method (Deschênes and Greenstone, 2011) to give less weight to stations 
more distant from the geographic centroid. We then compute an annual average of 
temperature, relative humidity, wind speed, sunshine duration, and barometric 
pressure and a cumulative annual value for precipitation. 

6. Results 

We first confirm that the KCAPC policy had a significant effect on pollution before 
estimating its combined effect. We then estimate the competitiveness effect and back 
out the ambient effect. We discuss identification of each as we proceed. 

6.1 Pollution effect 

A necessary condition for the KCAPC to exert an ambient effect is that it 
significantly reduced pollution. To see if this is the case, we estimate Equation (7) 
replacing productivity with two different pollution measures. Returning to our 
earlier illustrative example in Figure 4a, this estimates the difference of the average 
pollution reduction (blue-dashed curve) to the left of the boundary relative to the 
right. Columns (1) and (2) of Table 1 shows the DD estimates using log ambient 
PM2.5 concentration as the dependent variable. The unit of observation is a city-
year.25 Both columns include city fixed effects which capture time-invariant city 
characteristics that affect pollution and year fixed effects that capture annual factors 

                                                           
23 The AOD data are obtained from the Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS 
Aerosol Optical Depth (AOD) with GWR, v1 (1998–2016) released by the Socioeconomic Data and 
Applications Center of NASA (https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-
gwr-pm2-5-modis-misr-seawifs-aod). 
24 Available at http://data.cma.cn (in Chinese). 
25 This analysis includes 113 treatment and 148 control cities with ten years of data each. PM2.5 data is 
not available for all cities because the geographic definition of cities changed over time and we are 
only able to access pollution data that defines cities as of the year 2000. 

https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod
https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod
http://data.cma.cn/
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affecting pollution in all cities. Standard errors are clustered at the city level to allow 
for arbitrary correlations among unobservables affecting pollution over time within 
a city. Column 2 includes the weather controls while Column 1 does not. The 
KCAPC reduced PM2.5 concentrations by 3.8 to 4.1% in treatment cities relative to the 
control cities before versus after the policy. 

[Insert Table 1 here] 

Columns (3) and (4) estimate the same equation but use firm-year data on SO2 
emissions. Both columns include firm fixed effects to capture time-persistent firm 
factors affecting emissions and province-by-year and four-digit industry sector-by-
year fixed effects to capture time-varying geographic and industry factors affecting 
emissions. Standard errors are clustered at the city-year level to allow for 
correlations across firms within a city-year. Column (4) includes weather controls 
while Column (3) does not. The KCAPC policy leads to a 17.8 to 17.9% decline in 
emissions for treatment relative to control firms. Appendix F tests the parallel trends 
assumptions necessary for identifying these effects: event studies estimated by 
substituting year dummies (normalized to zero in 2002) for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003 in Equation (7). 
The figures confirm that both pollution measures follow similar trends for control 
and treatment groups in the three years prior to the KCAPC implementation, but 
afterward pollution drops discontinuously for the treatment group. 

6.2 Combined effect 

To estimate the combined effect we employ DD estimation using the three 
productivity measures as dependent variables and including different combinations 
of fixed effects. It is useful to compare our specification to that in Greenstone et al. 
(2012) as it relates to the sources of variation in the two settings. The CAAA and the 
KCAPC both imposed regulatory measures only on selected regions. This provides 
the basis for control and treatment groups and allows firm-specific shocks to 
productivity to be separately identified from regulatory effects. The CAAA 
generated additional variation which we do not have available. Under the CAAA, 
only plants that were major emitters of pollution were subject to regulation, allowing 
controls for time-specific shocks to productivity within counties. Since we do not 
have intra-city variation, we must rely on province-by-year or region-by-year fixed 
effects. The CAAA also offers additional time-series variation as counties could 
move in and out of regulatory status, while in our setting cities retained the same 
status throughout the post-policy period. Nonetheless, the identification conditions 
for our DD estimates are met and the combined effect is precisely estimated. 

The identifying assumption for the DD estimates is that the pre-existing trends for 
the control and treatment groups are parallel prior to the policy intervention. Figure 
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5 shows coefficients and 95% confidence intervals for event studies (substituting 
year dummies for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003 in Equation (7)). The interaction terms (normalized to 
zero in 2002) show no significant differential trends prior to 2003 and display a 
downward trend beginning in 2003 that becomes significant in 2005 for all three 
measures. This time lag is similar to that found in Greenstone et al. (2012) which 
notes that it can take plants a couple years to implement abatement actions. 

[Insert Figure 5 here] 

Table 2 shows estimates of the combined effect (𝛽𝛽𝐶𝐶𝐶𝐶 coefficient in Equation (7)). All 
specifications include firm fixed effects while Columns 1 through 3 use region-by-
year fixed effects and Columns 4 through 6 province-by-year fixed effects. Industry-
by-year fixed effects at the two-digit level are included in Columns 1 and 4, at the 
three-digit level in Columns 2 and 5, and at the four-digit level in Columns 3 and 6.26 
The results are very significant and fairly consistent across specifications. This 
stability implies that while these factors may determine productivity, they are 
uncorrelated with treatment status. In the most saturated model (Column 6), the 
KCAPC policy reduces TFP as measured by the OP method by 3.4%, TFP as 
measured by the LP method by 4.1%, and labor productivity by 3.9%. We use the 
midpoint of the TFP OP and LP measures (3.75%) as our headline result. 

[Insert Table 2 here] 

Price effects 

Since our results use revenue-based productivity measures, they may not reflect 
changes in quantity-based measures if price-cost margins are affected by the 
regulation (see Appendix A). To provide some suggestive evidence of whether this is 
the case, we follow Greenstone et al. (2012) and focus on ready-mixed concrete (SIC 
code 3121). As that paper notes, ready-mixed concrete is homogeneous allowing for 
the computation of prices without performing quality adjustments and its ubiquity 
and high transport costs ensure many local markets to provide significant variation. 
We obtain annual physical units of ready-mixed concrete produced by each firm 
from the NBS’ Production Survey and combine this with the annual revenue data 
per firm to compute a price per unit. Given this data, the effects of the KCAPC policy 
on revenue-based TFP can be decomposed into the effects on log price and log 
quantity-based TFP.27 

The top panel of Appendix G shows the results of estimating the combined effect 
(Equation (7)) using the OP method. The KCAPC policy reduces revenue-based TFP 
                                                           
26 There are 30 two-digit, 162 three-digit, and 425 four-digit industry codes. 
27 This follows because ln(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = ln(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) + ln (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and the inputs for both measures of 
TFP are the same. 
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by 7.2% for ready-mixed concrete – a higher effect than for manufacturing in general. 
Column (2) shows that the effect on log price per unit is small (1.7%) and not 
significantly different than zero. Column (3) shows that the policy reduces physical-
quantity TFP by 8.9%, which differs from the revenue-based effects by the 
insignificant effect on price. Thus, we do not find significant price effects for ready-
mixed concrete and the effects on revenue-based TFP are similar to those for 
quantity-based TFP. 

Greenstone et al. (2012) find significant effects of the CAAA policy on prices in the 
US. Why might our results differ? One possibility is that China’s denser population28 
might lead to more firms per market, vis-à-vis minimum efficient scale, so that 
market power is lower than in the US. Wang and Whalley (2017) find some evidence 
of this in comparing industry concentration measures between the two countries. 

Survival selection bias 

Firms that experience larger negative combined effects may be more likely to exit. If 
so, estimates of the combined effect will be biased upward toward zero. Because our 
data set also omits non-SOE firms below the CNY 5 million threshold, “exit” could 
also entail a non-SOE moving below this threshold. We perform two robustness 
checks to see whether our estimates might be affected by firm exit. We first examine 
whether individual firm exit is affected by the KCAPC policy. Column (1) of 
Appendix H estimates Equation (7) with an indicator variable set to one if a firm 
leaves the sample (either because it exits or falls below the threshold) between years 
𝑡𝑡 − 1 and 𝑡𝑡, and zero otherwise, as a dependent variable. The regression includes the 
same control variables as in the headline estimates. The KCAPC policy has an 
insignificant effect on the probability that a firm exits. Since this regression cannot 
utilize data on firms that leave pre-policy in identifying the effects of the control 
variables, we also estimate a DD regression at the city-year level: 

𝑌𝑌𝑐𝑐𝑐𝑐 = 𝛾𝛾𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 + 𝜌𝜌𝑐𝑐𝐶𝐶𝐶𝐶 + 𝛿𝛿𝑡𝑡𝐶𝐶𝐶𝐶 + 𝜖𝜖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 , (9) 

where 𝑌𝑌𝑐𝑐𝑐𝑐 is a measure of exit in city 𝑐𝑐 and year 𝑡𝑡. The city fixed effects 𝜌𝜌𝑐𝑐𝐶𝐶𝐶𝐶 capture 
time-persistent city-level factors that affect exit while year fixed effects 𝛿𝛿𝑡𝑡𝐶𝐶𝐶𝐶 capture 
year-specific unobservables that affect exit across all cities. 𝜖𝜖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 captures city-year 
specific shocks to exit. We cluster standard errors at the city level to allow for 
correlation in unobservables across years within a city. 

Column (2) of Appendix H estimates Equation (9) with firms leaving the sample as a 
fraction of all firms in the city-year. The point estimate is close to zero and 

                                                           
28 According to “World Population Prospects 2019” (United Nations), China’s population is, on 
average, four times denser than the US. 
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insignificant. Since SOEs are included in the sample regardless of size, focusing on 
them will isolate the effect of actual exit from threshold crossings. Column (3) 
estimates with SOE exits as a fraction of SOEs in the city-year as the dependent 
variable. The estimate is again close to zero and insignificant. Column (4) estimates 
using non-SOEs that leave the sample as a fraction of all non-SOEs. The estimate is 
small and insignificant. These results are consistent with the KCAPC policy not 
affecting firm survival. 

The second robustness check re-estimates our baseline results but omits firms that 
exited after the KCAPC policy went into effect. Column (1) of Appendix I repeats the 
baseline results while Column (2) presents estimates excluding firms that either 
exited or fell below the CNY 5 million threshold between 2004 and 2007. The 
estimates are very similar to the baseline results consistent with the KCAPC policy 
not having an appreciable effect on firm survival. 

Greenstone et al. (2012) find significant effects of the CAAA policy on firm survival. 
Why might our results differ? We cannot say for certain but one possibility is that 
China’s economy is growing rapidly during our sample period. This growth may 
have been rapid enough that the KCAPC policy did not appreciably affect firm exit. 

The KCAPC policy may also affect firm entry by reducing the expected profits of 
potential entrants. Because the data also omits non-SOEs below CNY 5 million in 
revenues, “entry” could include moving above this threshold. To see if our estimates 
might be affected by either, Column (5) of Appendix H estimates Equation (9) with 
firms appearing as a fraction of all firms in the city-year as the dependent variable.29 
The estimate is close to zero and insignificant consistent with the KCAPC policy not 
having an appreciable effect on firm entry or threshold crossings. 

Robustness 

We re-estimated clustering the standard errors at the city level to allow for arbitrary 
correlations across firms and over time within a city. The results are shown in 
Column (2) of Appendix J (top panel) compared to the baseline results in Column (1). 
As in Greenstone et al. (2012), this more general level of clustering results in less 
significant results. The significance levels are 14% for TFP OP, 9% for TFP LP, and 12% 
for labor productivity. Column (3) re-estimates weighting observations by firm value 
added in each year. The results are fairly similar to the baseline results except that 
the OP measure of TFP loses some significance. Column (4) weights instead by firm 
employment in each year. The results are somewhat greater in absolute value 

                                                           
29 We cannot estimate the effect of the policy on entry at the firm level because a firm must appear 
both before and after the policy to identify the treatment effect. 
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consistent with larger firms experiencing larger combined effects. Column (5) adds 
the weather control variables which produces very similar results to the baseline. 

6.3 Competitiveness effect 

Since inferring the competitiveness effect combines BD and DD estimation, there are 
three separate identification conditions. First, the BD aspect of the estimation 
requires that the treatment and control firms are close enough to each other that they 
experience the same ambient pollution before and after the policy change. The 
relevant question for determining this is how far the regulated pollutants disperse so 
that firms in that proximity experience the same pollution levels. SO2 pollution can 
travel hundreds of kilometers (Fisher, 1975), as does O3,30 NOX (EPA, 1999: 5), and 
PM10 (EPA, 1996: IV-6 and IV-7). As another point of reference, Chen et al. (2013) and 
Ebenstein et al. (2017) both apply a BD analysis to the Huai River policy measuring 
pollution in one-degree buckets. This corresponds to about 100 kilometers distance.31 
Our preferred estimates use a ten-kilometer distance, which is well below these 
distances. As an additional check, Appendix K compares the PM2.5 pollution 
concentrations in each year at maximum distances of one, ten, and fifty kilometers 
on each side of the borders between treatment and control regions. It shows that 
pollution is very similar on both sides of the border at maximum distances of 1 and 
10 but not 50 kilometers.32 

Second, the DD aspect of the estimation requires that the pre-existing trends in 
productivity for the control and treatment groups are parallel prior to the policy. 
Figure 6 shows coefficients and 95% confidence intervals for event studies 
(substituting year dummies for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003 in Equation (8)). The interaction terms 
(normalized to zero in 2002) show a slight, but insignificant, downward trend prior 
to 2001, then a leveling off before a more rapid downward trend beginning in 2003 
that becomes significant in 2005 for all three productivity measures. 

[Insert Figure 6 here] 

Third, there are no confounding factors coincident with the KCAPC policy that affect 
pollution or productivity differentially on different sides of the treatment-control 
borders. A major concern in this regard is empirical evidence that dirtier pollution 
sources are placed near political boundaries so as to “export” pollution to nearby 
jurisdictions. Most evidence concerns water pollution (Sigman, 2002; Sigman, 2005; 
                                                           
30 “What is Ozone?” (EPA) at https://www.epa.gov/ozone-pollution-and-your-patients-
health/what-ozone, accessed on August 4, 2022. 
31 The Huai River is located from 111°55' to 121°25' East longitude and from 30°55' to 36°36' North 
latitude. Calculating the distance in moving one degree from roughly the middle of these coordinates 
(115° East longitude and 33° North latitude) yields a distance of about 100 kilometers. 
32 The differences at 10 kilometers are statistically significant given the large amount of data but the 
magnitude of the differences is small – less than 2.5% in all years. 

https://www.epa.gov/ozone-pollution-and-your-patients-health/what-ozone
https://www.epa.gov/ozone-pollution-and-your-patients-health/what-ozone
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Kahn et al., 2015; Cai et al., 2016; Lipscomb and Mobarak, 2017; He et al., 2020) but 
there is also evidence for air pollution (Wang and Wang, 2021). If the incentive to do 
so changes with the implementation of the KCAPC, this would confound our 
estimates. To check for this, we test whether SO2 emissions of firms near the borders 
of treatment regions respond differently to the KCAPC policy than those inland of a 
treatment region (the same comparison within control regions is not possible 
because the ambient effect of the policy changes output, and therefore pollution, in 
border vis-à-vis inland areas of the control regions). 

Appendix L shows the results from estimating Equation (7) with log SO2 emissions 
as the dependent variable but further interacting the policy-treatment variable with 
an indicator set to one if the firm is within a certain distance of the border and zero 
otherwise.33 The KCAPC policy significantly reduces emissions by 15% to 18%. 
However, the policy has no differential effect on firms near the border relative to 
those inland in treatment regions, consistent with no manipulation in response to the 
policy. This is in contrast with results for water pollution; perhaps because air 
pollutants travel quite far and make such manipulation more difficult. 

Table 3 shows estimates of the competitiveness effect from the KCAPC policy. For 
this estimation, we use the most demanding fixed-effects specification including firm, 
province-by-year, and 4-digit industry code-by-year (corresponding to Column 6 in 
Table 2 for the DD estimates). The table shows different maximum distances 
between treatment and control firm pairs. There is a tradeoff as the distance 
increases. On the one hand, there is more data available to provide precision. On the 
other hand, the identification requirement that the treatment and control firms face 
the same ambient pollution is less likely to be met. The estimates are very significant 
except for the labor productivity measure at one kilometer. 

[Insert Table 3 here] 

We use the ten-kilometer estimates for our baseline since it is the shortest maximum 
distance that yields enough data to generate results significant at the 1% level for all 
three productivity measures. Again, using the average of the OP and LP TFP 
estimates as our headline result, the competitiveness effect of the KCAPC is a 6.40% 
decline in TFP. The annual competitiveness effect is equivalent to stalling TFP 
growth by 3.0 years.34 

                                                           
33 Appendix F shows the parallel trends tests for the SO2 emissions measure. 
34 Annual TFP growth over the sample period is 2.1% using the average of the annual growth rates for 
TFP calculated using the OP and LP methods. 
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Price effects 

The bottom panel of Appendix G shows the results of estimating the competitiveness 
effect (Equation (8)) on ready-mix concrete for the three different components of 
revenue productivity using the OP method. The price effect (Column (2)) is small 
and insignificant. The competitiveness effect for ready-mixed concrete is 23.4% 
measured in physical units (Column (3)), which differs from the revenue-based 
effects by the insignificant effect on price. 

Survival selection bias 

Appendix I shows robustness of the competitiveness effect estimates to firm survival. 
Column (3) replicates the preferred baseline estimates while Column (4) re-estimates 
excluding firms that either exited or fell below the CNY 5 million threshold post 
policy. The results are similar to the baseline estimates consistent with the KCAPC 
regulation not having an appreciable effect on firm survival. 

Agglomeration effects 

Competitiveness effects may be amplified by agglomeration spillovers. Productivity 
declines for treatment firms in response to the KCAPC may spill over to 
geographically-proximate treatment and control firms. This will not bias the BD-DD 
estimates but the estimates would include both effects.35 Policymakers may wish to 
distinguish the direct competitiveness effects from the ensuing spillovers. If the 
spillovers are confined within industries then the industry-by-year fixed effects will 
absorb them. However, Greenstone et al. (2010) find spillovers driven by more 
general labor and technological linkages between firms. To test for agglomeration 
effects, we follow that paper and assume that the TFP of a firm is affected by the 
number of proximate firms.36 We estimate a triple-DD that compares policy effects in 
border areas with high relative to low densities of control firms controlling for the 
triple-DD with respect to the density of treatment firms. Agglomeration spillovers 
resulting from the policy will affect control and treatment firms that are near each 
other equally, but the number of treatment firms will also amplify the ambient 
effects. This is not an issue for the control firms since their emissions are not directly 
affected by the regulation. Therefore, the triple-DD with respect to the number of 

                                                           
35 The policy could be correlated with firm density (e.g., areas with higher firm density are more 
polluted and therefore targeted by the policy) or firm densities could change differentially on average 
for treatment versus control firms. Neither of these would bias the BD-DD estimates since the 
comparison is within a small geographic area in which treatment and control firms face the same firm 
density at any point in time. It could affect out-of-sample extrapolation of the policy effects since the 
BD-DD sample naturally includes higher density areas. This provides another reason for the 
robustness check. 
36 We are unable to follow the empirical approach of the paper as we do not have the same input-
output, labor sharing, or technology linkage data. 
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control firms (𝑁𝑁𝐶𝐶𝐶𝐶) isolates the agglomeration effect if we simultaneously control for 
the triple-DD with respect to the number of treatment firms (𝑁𝑁𝑇𝑇𝑇𝑇). Appendix M 
provides the conceptual model underlying this estimation. 

We modify Equation (7) to add these triple interaction terms to the BD-DD 
estimation: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐[𝛽𝛽𝐶𝐶𝐶𝐶 + 𝛽𝛽𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁𝑇𝑇𝑇𝑇) + 𝛽𝛽𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁𝐶𝐶𝐶𝐶)] +
𝛾𝛾𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁𝑇𝑇𝑇𝑇) + 𝛾𝛾𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁𝐶𝐶𝐶𝐶) + 𝜂𝜂𝑖𝑖𝐶𝐶𝐶𝐶 + 𝜃𝜃𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑁𝑁. (10) 

𝛽𝛽𝐶𝐶𝐶𝐶 captures the competitiveness effect for a firm with no proximate firms near it 
(i.e.,  𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑇𝑇𝑇𝑇 + 𝑁𝑁𝐶𝐶𝐶𝐶 = 0).37 𝛽𝛽𝑁𝑁𝑁𝑁 controls for the amplification of ambient effects in 
response to the policy due to the number of treatment firms. 𝛽𝛽𝑁𝑁𝑁𝑁  is the main 
coefficient of interest and captures any agglomeration effect changes in response to 
the policy, which could be positive or negative. 𝛾𝛾𝑇𝑇 and 𝛾𝛾𝐶𝐶 control for any differential 
effects due to the density of treatment and control forms respectively before versus 
after the policy.38 

Appendix N shows the results for each of the productivity measures using ten 
kilometers as the maximum distance between paired treatment and control firms, 
and setting 𝑁𝑁𝐶𝐶𝐶𝐶 and 𝑁𝑁𝑇𝑇𝑇𝑇 equal to the number of firms of each type within a ten-
kilometer radius of the firm. There is a lot of variation in the number of proximate 
firms (mean of 570.7 with a standard deviation of 438.3). For all three measures, the 
treatment effect does not vary with the number of proximate control firms consistent 
with no significant agglomeration effects in response to the policy. The treatment 
effect is decreasing in the number of proximate treatment firms consistent with 
agglomeration effects amplifying the competitiveness effect convexly (see Appendix 
M). 

Robustness 

We re-estimated clustering the standard errors at the city level to allow for arbitrary 
correlations across firms and over time within cities. The results are shown in 
Column 2 of Appendix J (lower panel) compared to the baseline results in Column 1. 
This more general level of clustering reduces the significance of the coefficients 
although the TFP OP and TFP LP results remain significant at the 10% and 5% levels. 
Column 3 weights observations by firm value added. The results are fairly similar 
and remain significant. Weighting by employment in the firm-year (Column 4) 
increases the coefficients somewhat in absolute value consistent with somewhat 

                                                           
37 This is an out-of-sample prediction since the BD-DD estimation requires at least one nearby firm. 
38 Since we choose the closest firm of the opposite type over the whole sample period, an interaction 
of firm densities with the treatment dummy is absorbed by the firm fixed effects. 
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greater effects for large firms. Column 5 adds the weather controls. The results are 
fairly similar to the baseline results. 

Falsification tests 

Table 4 extends the maximum distance between treatment and control firm pairs in 
20-kilometer increments from 20 to 100 kilometers and shows that the ambient effect 
confounds the competitiveness effect at far distances. As the maximum distance 
increases, the point estimates become monotonically less negative. This is because 
the competitiveness effect remains the same as the distance increases (treatment and 
control firms are still being compared) but the firms no longer face the same ambient 
pollution. As the distance increases, included firms in the control areas benefit less 
and less from the positive ambient spillovers as in the illustrative example in Figure 
4b (large-dashed line). At a great enough distance, the estimate is equal to the 
combined effect since the control firms are far enough from the border to enjoy none 
of the ambient effect. This appears to occur above around 80 kilometers. 

[Insert Table 4 here] 

Appendix O performs a placebo test by randomly choosing 113 of the 338 cities and 
estimating the baseline model (Column (3) of Table 3) assuming these are the 
treatment cities and all other cities are the controls. Panel (a) plots the coefficients 
from repeating this 500 times using the TFP OP measure. The distribution is centered 
on zero and only 6.8% of the coefficients exceed (in absolute value) the baseline 
estimate. Panels (b) and (c) show similar results for the TFP LP and labor 
productivity measures with 2.4% and 13.6% of the distribution exceeding the 
baseline estimates, respectively. 

6.4 Ambient effect 

KCAPC’s ambient effect on productivity in the treatment cities is the difference 
between the combined and competitiveness effects. To quantify the uncertainty in 
this estimate we perform a block bootstrap of 500 iterations that allows for clustering 
at the city-year level and accounts for estimation error across the estimates for both 
the combined and competitiveness effects.39 Our headline estimate of the 
competitiveness effect is -6.40% and of the combined effect is -3.75%. This implies an 
ambient pollution effect in the treatment cities of 2.65% and the bootstrap standard 
error is 0.014 (significant at the 6.3% level).40 

                                                           
39 At each iteration we draw (with replacement) a block bootstrap by city-year and estimate the 
combined and competitiveness effects. The standard deviation of the difference of these estimates 
across all iterations is the standard error. 
40 The estimates with bootstrap standard errors are 0.027 (0.014) for TFP using the LP method 
(significant at the 5.4% level) and 0.017 (0.015) using the labor productivity measure (insignificant). 
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The reasonableness of this calculation depends on treatment firms in the BD-DD 
subsample being similar to treatment firms in the overall DD sample. Appendix P 
makes this comparison. Column 1 provides the mean characteristics for firms in 
treatment cities used in the DD estimation and Column 2 for those used in the BD-
DD estimation (applying a maximum distance of ten kilometers for treatment-
control pairs). Column 3 tests for the difference between the two means. Although 
many of the characteristics are statistically significantly different from each other in 
the two samples, the magnitude of the differences is not large (no more than 8.7%). 

We can combine the ambient effect estimate with our DD estimate of KCAPC’s effect 
on PM2.5 to obtain an elasticity of productivity with respect to ambient pollution. 
KCAPC reduced PM2.5 by 4.1% (using the estimates with weather controls) implying 
an elasticity of -0.65 for our headline estimates. This is higher than the -0.28 estimate 
obtained in Fu et al. (2021). A possible reason is that the current estimate applies to 
2003 while that in Fu et al. (2021) is an average across all years from 1998 to 2007. 

6.5 Illustrative policy evaluation 

To illustrate the importance of distinguishing competitiveness and ambient effects, 
we conduct a back-of-the-envelope calculation of the KCAPC policy’s net effect. If 
combined effects are identified from data on all firms then DD estimates provide a 
consistent estimate of the regulation’s average policy effect on all firms. In our 
setting, as in many others, not all firms are included. A key constraint is that only 
firms present before and after the policy identify the DD effects. Therefore, the 
combined effect identified from this subset of firms cannot be directly applied to 
arrive at the average policy effect for all firms unless the mix of regulated and 
unregulated firms (and the geographic placement of the latter relative to the 
treatment regions) is the same in the full sample as in the sub-sample. We illustrate 
how the decomposition into competitiveness and ambient effects allows the average 
policy effects to be calculated in these circumstances using our setting as an example. 

 There are three components: First, the cost of the competitiveness effect to the 
194,228 regulated firms in the full sample. Applying the estimated competitiveness 
effect (-6.40%) and average value added per regulated firm (CNY 12.667 million), 
yields a cost of CNY 157.5 (USD 23.5) billion annually. Second, is the benefit of the 
ambient effect (2.65%) applied to these regulated firms: CNY 65.2 (USD 9.7) billion 
annually. The third component is the ambient effect on proximate control firms. To 
roughly approximate this, we use the fact that our falsification test (Table 4) 
indicates that the ambient effects subside at about 80 kilometers from the nearest 
treatment firm. We identify the number of control firms in buckets of five kilometers 
up to a distance of 80 kilometers from the nearest treatment firm and assume that the 
ambient effects decline linearly from 2.65% in the five-kilometer bucket to zero in the 
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80-kilometer bucket.41 There are a total of 105,062 control firms in all buckets with an 
ambient benefit of CNY 22.3 (USD 3.3) billion annually.42 The three components 
imply a net policy cost of CNY 69.9 billion (USD 10.4) billion annually. This is quite 
different from naïvely applying the estimated combined effect (3.75%) to the CNY 
12.177 million average value added of all firms in the sample (CNY 142.2, USD 21.2 
billion annually). 

6.6 Alternative specification based on distance 

An alternative approach to identifying the competitiveness effect is to include data 
further from the boundary and include a measure of distance to the nearest firm of 
the opposite type (control versus treatment). The ambient effect declines with 
distance into a control city while the competitiveness effect is invariant to distance. 
Therefore, allowing the productivity to vary with distance forms a triple-differences 
estimator. For example, refer to the illustrative example in Figure 4b. If a control firm 
is located 20 kilometers from the boundary, the combined effect it experiences would 
be 2.0% compared to -3.5% for the treatment firms (a difference of -5.5%). On the 
other hand, if the control firm is located 40 kilometers from the boundary the 
combined effect it experiences would be 1.5% compared to -3.5% for the treatment 
firms (a difference of -5.0%). At a distance close to zero, a control firm experiences a 
combined effect of 2.5% compared to -3.5% for a treatment firm – a difference equal 
to the competitiveness effect of -6.0%. 

Given the competitiveness effect is invariant to distance while the ambient effect is 
not, the two can be separated by including a policy-treatment interaction (to capture 
the competitiveness effect) along with a policy-treatment-distance interaction (to 
capture the changes in ambient effect with distance). The sample is the same as that 
used in the DD estimation. In order to assign a unique distance for each firm, we use 
the distance to the nearest firm of the opposite type. Since this is an approximation 
of the true geospatial relationships we regard these estimates as supporting evidence 
only. We estimate the following equation: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) = 𝛽𝛽𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 + 𝛽𝛽𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2003𝑡𝑡 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 
+𝜂𝜂𝑖𝑖𝐷𝐷 + 𝜃𝜃𝐷𝐷𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐷𝐷 , (11) 

                                                           
41 This assumption implies some contamination of the DD estimates as the control group is not 
completely free of ambient effects. The contamination depends on the number of control firms within 
each bucket 𝑏𝑏 (𝑁𝑁𝐶𝐶𝐶𝐶) according to 1

𝐹𝐹
∑ �0.0265(80−𝑏𝑏)

75
𝑁𝑁𝐶𝐶𝐶𝐶�𝑏𝑏∈{5,10,⋯,80}  where 𝐹𝐹 is the total number of firms in 

the sample. This follows from our assumption that the ambient effects (0.0265) decline linearly with 
distance to hit zero at 80 kilometers. This calculation yields 0.0063 (16.8% of the DD estimates). 
42 We use the average value added across all 117,225 control firms in the full sample (CNY 11.293) to 
calculate this. 
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where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the distance between firm 𝑖𝑖 and its nearest neighbor of the 
opposite type (control versus treatment). 𝛽𝛽𝐷𝐷1 captures the competitiveness effect – 
the policy effect at a distance of zero. 𝛽𝛽𝐷𝐷2 captures the decay of the ambient effect as 
the firms are further apart. We expect 𝛽𝛽𝐷𝐷2 to be positive – the difference between the 
treatment and control firm productivity becomes less negative as the firms are 
further from the border because the control firms benefit less and less from the 
ambient effect while treatment firms continue to enjoy the full ambient effect.43 

Table 5 shows the results of estimating Equation (11) for the different productivity 
measures. For ease of reporting, distances are rescaled to hundreds of kilometers. 
The coefficient on the policy-treatment interaction term is very significant and 
estimates a somewhat smaller competitiveness effect than that estimated by the BD-
DD approach for the OP measure (-5.2% versus -6.0%) as well as for the LP measure 
(-5.9% versus -6.8%). The coefficient on the policy-treatment-distance interaction 
term is positive as expected. Since we impose a linear function for the decay of the 
ambient function and Table 4 indicates that the ambient effect dissipates at about 80 
kilometers, Columns (3) and (4) re-estimate restricting the sample to firm pairs 
within 80 kilometers of each other. The point estimates are somewhat closer to the 
baseline (-5.3% for the OP and -6.3% for the LP measure). 

[Insert Table 5 here] 

7. Conclusion 

Choosing optimal environmental regulations requires an accurate cost-benefit 
analysis of their impact. This paper isolates the net private costs to firms from 
complying with a regulation from the spillover benefits of improved productivity 
that accrue to all proximately-located firms regardless of whether they are subject to 
the regulation. Failing to separate these effects understates the private costs to 
regulated firms and ignores the public benefits to other firms. The results also imply 
that the net cost of environmental regulations is lower when applied in areas with 
high firm density. 

While this paper has applied the approach to a geographically-targeted regulation, 
the approach works even in the absence of explicit physical boundaries. For example, 
it is applicable to a virtual boundary such as an industry-targeted regulation in 
which the private costs accrue to the industry but spillover benefits accrue to 
proximately-located firms in all industries or to a regulation targeting only specific 
firms but proximate firms benefit from the ambient spillover effects. 

Our paper examines only manufacturing firms. A similar decomposition may be 
necessary for services firms. For example, regulating emissions from transportation 
and distribution industries would impose compliance costs on these firms but also 
                                                           
43 A standalone distance term is not included as it would be collinear with the firm fixed effects. 
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benefit other firms in improved productivity from reduced pollution concentrations. 
With slight modification, the approach developed in the paper could be applied to 
water pollution to determine whether productivity spillovers are significant and 
whether these productivity benefits also accrue to the regulated firms. 
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Figure 1: Effects of environmental regulation on firm productivity 

 

 

Figure 2: Heat map of PM2.5 pollution concentrations along two example borders using 1-, 
10-, 50-, and 100-kilometer maximum distances from border between treatment and 
control regions 

 

Heat map constructed using 2007 annual concentrations of PM2.5 derived from satellite-based Aerosol 
Optical Depth (AOD) retrieval techniques maintained by the National Aeronautics and Space 
Administration (NASA). Concentrations are calculated following van Donkelaar et al. (2016) and van 
Donkelaar et al. (2018). The AOD pollution data are reported in 1- by 1-kilometer grids. 
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Figure 3: Illustrative example of estimating combined, competiveness, and ambient effects 

  

Comparing firms 2 and 4 yields the combined effect while comparing firms 1 and 3 yields the 
competitiveness effect. The difference between the two equals the ambient effect. 

 

  

City B (not subject 
to KCAPC)

City A
(subject to KCAPC)
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Figure 4a: Ambient pollution and productivity effects in illustrative example as function of 
distance from border for treatment (negative) and control (positive) regions 

      

Assumes an ambient pollution effect of -5.0%, pollution gradient of 0.05% per kilometer in the control 
region, and an elasticity of productivity with respect to pollution of -0.50. 

Figure 4b: Combined (ambient plus competitiveness) productivity effect in illustrative 
example as function of distance from border for treatment (negative) and control 
(positive) regions 

     

Assumes a competitiveness effect -6.0%, an ambient pollution effect of -5.0%, and a pollution gradient 
of 0.05% per kilometer in the control region. 
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Figure 5: Test of parallel trends in DD sample for control versus treatment cities (N = 541,845) 

TFP (OP estimates) 

 
TFP (LP estimates) 

 
Labor productivity 

 

Coefficients and 95% confidence intervals for event studies (substituting year dummies for Post2003 
in Equation (7) of the main text) in the DD sample. 
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Figure 6: Test of parallel trends in BD-DD sample for control versus treatment cities (N = 
224,192) using a ten-kilometer maximum distance 

TFP (OP estimates) 

 
TFP (LP estimates) 

 
Labor productivity 

 
Coefficients and 95% confidence intervals for event studies (substituting year dummies for Post2003 
in Equation (8) of the main text) in the BD-DD sample using a ten-kilometer maximum distance 
between treatment and control firms. 
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Table 1: Effect of KCAPC policy on city-level PM2.5 concentrations and firm-level SO2 
emissions – DD estimation 

     

Policy*treatment -0.038 ** -0.041 *** -0.178 *** -0.179 ***

(0.015) (0.015) (0.037) (0.037)

Number of observations

Firm FE YES YES

City FE YES YES

Year FE YES YES

Province-by-year FE YES YES

4-digit-sector-by-year FE YES YES

Weather controls YES YES

This table reports results from estimating alternative versions of Equation (7) in the main text with 
log PM2.5 pollution concentrations in the city-year (Columns (1) and (2)) and log SO2 emissions in 
the firm-year (Columns (3) and (4)) as the dependent variables and using data from 1998 to 2007. 
The independent variables include the policy dummy interacted with a treatment dummy along with 
alternative sets of fixed effects and controls identified at the bottom of the table. The entries are the 
coefficients and standard erorrs (in parentheses) of the policy-treatment interaction. Standard errors 
are clustered at the city (Columns (1) and (2)) and city-year (Column (3)) level. *** p<0.01, ** 
p<0.05, * p<0.1.

(4)
log(SO2)

46,428

(1) (2) (3)
log(PM2.5)

2,610
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Table 2: Combined effect of KCAPC policy on productivity – DD estimation 

  

 

 

Firm TFP (OP Method)
Policy*treatment -0.037 *** -0.032 ** -0.030 ** -0.038 *** -0.035 *** -0.034 ***

(0.013) (0.013) (0.013) (0.011) (0.011) (0.011)

Firm TFP (LP Method)
Policy*treatment -0.040 *** -0.038 *** -0.037 *** -0.043 *** -0.041 *** -0.041 ***

(0.014) (0.013) (0.013) (0.012) (0.012) (0.012)

Firm Labor Productivity
Policy*treatment -0.051 *** -0.045 *** -0.042 *** -0.045 *** -0.040 *** -0.039 ***

(0.014) (0.014) (0.014) (0.012) (0.012) (0.012)

Number of observations

Firm FE YES YES YES YES YES YES

Region-by-year FE YES YES YES

Province-by-year FE YES YES YES

2-digit-sector-by-year FE YES YES

3-digit-sector-by-year FE YES YES

4-digit-sector-by-year FE YES YES

This table reports results from estimating alternative versions of Equation (7) in the main text which regresses firms' 
productivity on the policy dummy interacted with a treatment dummy along with alternative sets of fixed effects identified at 
the bottom of the table using data from 1998 to 2007. The entries are the coefficients and standard erorrs (in parentheses) of 
the policy-treatment interaction. Standard errors are clustered at the city-year level. *** p<0.01, ** p<0.05, * p<0.1. 
Estimates with 3- and 4-digit industry-by-year interactions contain fewer observations due to singleton observations for 
some interactions.

(6)(1) (2) (4) (5)(3)

541,887 541,885 541,845 541,887 541,885 541,845
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Table 3: Competitiveness effect of KCAPC policy on productivity – BD-DD estimation using 
different maximum distances between treatment and control firm pairs 

    

  

Firm TFP (OP Method)
Policy*treatment -0.057 ** -0.053 *** -0.060 *** -0.066 ***

(0.029) (0.020) (0.017) (0.016)

Firm TFP (LP Method)
Policy*treatment -0.080 *** -0.062 *** -0.068 *** -0.078 ***

(0.029) (0.020) (0.018) (0.016)

Firm Labor Productivity
Policy*treatment -0.053 -0.055 ** -0.056 *** -0.062 ***

(0.034) (0.023) (0.019) (0.017)

Average Productivity

Log TFP (OP estimates) 2.89       2.89       2.90       2.91       

Log TFP (LP estimates) 5.34       5.38       5.41       5.43       

Labor productivity 62.95     69.81     74.61     78.44     

Number of observations

Firm FE YES YES YES YES

Province-by-year FE YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES

This table reports results from estimating alternative versions of Equation (8) in the main text 
which regresses firms' productivity on the policy dummy interacted with a treatment dummy 
along with alternative sets of fixed effects identified at the bottom of the table. Regressions use 
data from 1998 to 2007 and apply different maximum distances between treatment and control 
firm pairs identified at the top of the column. The entries are the coefficients and standard 
erorrs (in parentheses) of the policy-treatment interaction. Standard errors are clustered at the 
city-year level. *** p<0.01, ** p<0.05, * p<0.1. 

51,578 146,541 224,192 331,820

1-kilometer 5-kilometer 10-kilometer 20-kilometer
(1) (2) (3) (4)
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Table 4: Falsification test of competitiveness effect due to KCAPC policy – BD-DD estimation 
with large maximum distances between treatment and control firm pairs 

  
 

Firm TFP (OP Method)
Policy*treatment -0.066 *** -0.051 *** -0.042 *** -0.035 *** -0.035 ***

(0.016) (0.013) (0.012) (0.012) (0.012)

Firm TFP (LP Method)
Policy*treatment -0.078 *** -0.062 *** -0.053 *** -0.043 *** -0.043 ***

(0.016) (0.014) (0.013) (0.012) (0.012)

Firm Labor Productivity
Policy*treatment -0.062 *** -0.052 *** -0.044 *** -0.037 *** -0.037 ***

(0.017) (0.014) (0.013) (0.012) (0.012)
Average Productivity

Log TFP (OP estimates) 2.91          2.90          2.89          2.88          2.87          

Log TFP (LP estimates) 5.43          5.43          5.42          5.42          5.42          

Labor productivity 78.44        79.92        80.51        80.58        80.83        

Number of observations

Firm FE YES YES YES YES YES

Province-by-year FE YES YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES YES

505,597 521,279

(5)
100-kilometer

This table reports results from estimating alternative versions of Equation (8) in the main text which regresses firms' 
productivity on the policy dummy interacted with a treatment dummy along with alternative sets of fixed effects 
identified at the bottom of the table. Regressions use data from 1998 to 2007 and apply different maximum distances 
between treatment and control firm pairs identified at the top of the column. The entries are the coefficients and 
standard erorrs (in parentheses) of the policy-treatment interaction. Standard errors are clustered at the city-year level. 
*** p<0.01, ** p<0.05, * p<0.1. 

20-kilometer 40-kilometer 60-kilometer 80-kilometer

331,820 429,446 479,024

(1) (2) (3) (4)
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Table 5: Combined effect of KCAPC policy on productivity as a function of distance 
between treatment and control firm pairs – DDD estimation 

     

Policy*treatment -5.152 *** -5.913 *** -5.348 *** -6.281 ***

(1.290) (1.361) (1.386) (1.460)

Policy*treatment*distance 0.083 *** 0.085 *** 0.097 *** 0.101 ***

(0.022) (0.024) (0.031) (0.033)

Number of observations

Firm FE YES YES YES YES

Province-by-year FE YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES

This table reports results from estimating Equation (11) in the main text which regresses firms' 
productivity on the policy dummy interacted with a treatment dummy and further interacted with the 
distance between firms in the treatment-control pair using data from 1998 to 2007. Columns (1) and (2) 
include all data while Columns (3) and (4) include only treatment-control pairs within 80 kilometers of 
each other. Regressions also include fixed effects identified at the bottom of the table. The entries are 
the coefficients and standard erorrs (in parentheses) of the policy-treatment interaction terms. Standard 
errors are clustered at the city-year level. *** p<0.01, ** p<0.05, * p<0.1. 

(1) (3)(2)

Firm TFP (OP 
method)

Firm TFP (LP 
method)

(x 100) (x 100) (x 100)

Firm TFP (OP 
method)

80-km maximum distance

(x 100)

(4)

Firm TFP (LP 
method)

505,597541,845
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Appendix A: Marginal cost in conceptual framework 

The firm’s cost minimization problem is: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑖𝑖,𝐾𝐾𝑖𝑖

 𝐶𝐶𝑖𝑖 = 𝑤𝑤𝑖𝑖𝐿𝐿𝑖𝑖 + 𝑟𝑟𝑖𝑖𝐾𝐾𝑖𝑖 𝑠𝑠𝑠𝑠 𝑄𝑄𝑖𝑖 = 𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿
𝛼𝛼𝜆𝜆𝐾𝐾

1−𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐾𝐾𝑖𝑖1−𝛼𝛼, (A1) 

where 𝑤𝑤𝑖𝑖 and 𝑟𝑟𝑖𝑖 are the wages and interest rates faced by the firm. We have suppressed the 
dependence of 𝜆𝜆𝐿𝐿 and 𝜆𝜆𝐾𝐾 on 𝑟𝑟 and Ω for ease of exposition. Taking the first-order conditions: 

𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝐿𝐿𝑖𝑖

= 𝛼𝛼𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿
𝛼𝛼𝜆𝜆𝐾𝐾

1−𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼−1𝐾𝐾𝑖𝑖1−𝛼𝛼 = 𝑤𝑤𝑖𝑖, (A2a) 
𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝐾𝐾𝑖𝑖

= (1 − 𝛼𝛼)𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿
𝛼𝛼𝜆𝜆𝐾𝐾

1−𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐾𝐾𝑖𝑖−𝛼𝛼 = 𝑟𝑟𝑖𝑖. (A2b) 

Dividing Equation (A2a) by (A2b): 

𝛼𝛼𝐾𝐾𝑖𝑖
(1−𝛼𝛼)𝐿𝐿𝑖𝑖

= 𝑤𝑤𝑖𝑖
𝑟𝑟𝑖𝑖

. (A3) 

And: 

𝐾𝐾𝑖𝑖 = 𝑤𝑤𝑖𝑖
𝑟𝑟𝑖𝑖

(1−𝛼𝛼)
𝛼𝛼

𝐿𝐿𝑖𝑖. (A4) 

 
Substituting into the production function: 
 

𝐿𝐿𝑖𝑖 = 1
𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿

𝛼𝛼𝜆𝜆𝐾𝐾
1−𝛼𝛼 �

𝑤𝑤𝑖𝑖
𝑟𝑟𝑖𝑖

(1−𝛼𝛼)
𝛼𝛼

�
𝛼𝛼−1

𝑄𝑄𝑖𝑖. (A5) 

 

And substituting back into Equation (A4): 

𝐾𝐾𝑖𝑖 = 1
𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿

𝛼𝛼𝜆𝜆𝐾𝐾
1−𝛼𝛼 �

𝑤𝑤𝑖𝑖
𝑟𝑟𝑖𝑖

(1−𝛼𝛼)
𝛼𝛼

�
𝛼𝛼
𝑄𝑄𝑖𝑖. (A5) 

So that: 

𝐶𝐶𝑖𝑖 = 1
𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿

𝛼𝛼𝜆𝜆𝐾𝐾
1−𝛼𝛼 𝜙𝜙𝑤𝑤𝑖𝑖𝛼𝛼𝑟𝑟𝑖𝑖1−𝛼𝛼𝑄𝑄𝑖𝑖. (A6) 

where 𝜙𝜙 = ��(1−𝛼𝛼)
𝛼𝛼

�
𝛼𝛼−1

+ �(1−𝛼𝛼)
𝛼𝛼

�
𝛼𝛼
�. 

Finally: 

𝑀𝑀𝑀𝑀𝑖𝑖 = 𝑑𝑑𝐶𝐶𝑖𝑖
𝑑𝑑𝑄𝑄𝑖𝑖

= 1
𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿

𝛼𝛼𝜆𝜆𝐾𝐾
1−𝛼𝛼 𝜙𝜙𝑤𝑤𝑖𝑖𝛼𝛼𝑟𝑟𝑖𝑖1−𝛼𝛼. (A7) 
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Appendix B: Class II pollution standards under GB3095-2000 (in mg/m3) 

 

 

Appendix C: Treatment and control cities under the KCAPC policy 

 
Map displays the 113 treatment cities (shaded) subject to regulation under the KCAPC policy and the 
225 control cities not subject to the regulation (unshaded). 

Annual Daily Hourly

SO2 0.06 0.15 0.50
NO2 0.08 0.12 0.24
O3 N/A N/A 0.20
TSP 0.20 0.30 N/A
PM10 0.10 0.15 N/A
CO N/A 4.00 10.00

Based on Ministry of Environmental Protection of China (MEP) 
https://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_171965.htm. 
N/A indicates not applicable.
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Appendix D: Summary statistics for DD sample (N = 541,887) 

   

 
  

(1) (2) (3) (4)
Mean St Dev Min Max

Log TFP (OP estimates) 2.87 0.99 -2.67 8.40

Log TFP (LP estimates) 5.42 0.94 0.57 9.86

Labor productivity (CNY 1,000/ Worker) 81.21 142.10 0.26 11,137.07

Employment (persons) 227 297 10 3,013

Sales (CNY 1,000) 48,768 90,252 0 7,983,558

Value added (CNY 1,000) 13,845 24,261 74 366,425

Wages (CNY 1,000) 2,741 4,792 1 299,283

Capital (CNY 1,000) 15,881 30,868 64 350,534

Intermediate Inputs (CNY 1,000) 37,364 70,884 0 1,681,560

Number of firms

Firm-level data from 1998 to 2007 used in DD estimation of the combined effect (firms that appear in at least 
one year before and one year after the policy change in 2003).

87,933
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Appendix E: Summary statistics for BD-DD sample using a ten-kilometer maximum 
distance for treatment and control firm pairs (N = 224,334) 

   

 
  

Mean St Dev Min Max

Log TFP (OP estimates) 2.90 0.90 -2.67 8.40

Log TFP (LP estimates) 5.41 0.87 0.82 9.86

Labor productivity (CNY 1,000/ Worker) 74.61 128.03 0.46 11,036.47

Employment (persons) 217 286 10 3,012

Sales (CNY 1,000) 49,158 90,456 0 2,153,603

Value added (CNY 1,000) 12,893 23,004 103 353,902

Wages (CNY 1,000) 2,871 4,834 1 241,236

Capital (CNY 1,000) 15,328 30,689 64 350,534

Intermediate Input (CNY 1,000) 38,098 72,184 1 1,574,035

Number of firms 35,398

Firm level data from 1998 to 2007 (firms that appear in at least one year before and one year after the 
policy change in 2003) in the BD-DD sample using a ten-kilomoter maximum distance between treatment 
and control firms.
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Appendix F: Pre-treatment trends and policy effect for pollution measures 
 

PM2.5 concentrations 

 
Coefficients and 95% confidence intervals for event studies (substituting year dummies for Post2003 
in Equation (7) of the main text) using city-year log PM2.5 pollution concentrations in treatment and 
control cities as the dependent variable (N = 2,610). 

SO2 emissions 

 

Coefficients and 95% confidence intervals for event studies (substituting year dummies for Post2003 
in Equation (7) of the main text) using firm-year log SO2 emissions as the dependent variable (N = 
46,428). 
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Appendix G: TFP and price effects for ready-mixed concrete (SIC code 3121) firms – 
combined and competitiveness effects of KCAPC policy 

  
 

 
  

Combined effect
Policy*treatment -0.072 *** 0.017 -0.089 **

(0.025) (0.027) (0.039)

Number of observations

Competitiveness effect
Policy*treatment -0.164 *** 0.070 -0.234 **

(0.059) (0.080) (0.102)

Number of observations

Firm FE YES YES YES

Province-by-year FE YES YES YES

Results from estimating Equation (7) (top panel) and Equation (8) using a 10-kilometer 
maximum distance (bottom panel) in the main text with different outcome measures 
(revenue-based TFP, log unit price, and quantity-based TFP) on the policy dummy 
interacted with a treatment dummy along with sets of fixed effects identified at the bottom 
of the table. Data for all ready-mixed concrete (SIC code 3121) firms in the sample from 
1998 to 2007. TFP is estimated using the OP method. The entries are the coefficients and 
standard erorrs (in parentheses) of the policy-treatment interaction. Standard errors are 
clustered at the city-year level. *** p<0.01, ** p<0.05, * p<0.1. 

(1)

Revenue TFP

(3)(2)
Physical-

Quantity TFPLn(Price)

11,334

2,257
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Appendix H: Combined effect of KCAPC policy on firm “exit” and “entry” – DD estimation 
 

 
 

 

Policy*treatment 0.158 -0.002 -0.005 -0.003 -0.003
(0.236) (0.009) (0.019) (0.009) (0.013)

Number of observations

Firm FE YES NO NO NO NO

City FE NO YES YES YES YES

Year FE NO YES YES YES YES

4-digit-sector-by-year FE YES NO NO NO NO

Province-by-year FE YES NO NO NO NO

Fraction Firms 
Appearing

2,976

Column (1) reports results from estimating Equation (7) in the main text with an indicator variable indicating firm exit and 
fixed effects identified at the bottom of the table. Columns (2) through (5) report results from estimating Equation (9) in 
the main text with different city-year outcome measures as specified at the top of each column along with sets of fixed 
effects identified at the bottom of the table. Coumns (1) through (4) use data from 1998 to 2006; Column (5) from 1999 to 
2007. The number of observations in Columns (2) through (4) differ because some cities did not experience firm 
departures in a given year. The entries are the coefficients and standard erorrs (in parentheses) of the policy-treatment 
interaction. Standard errors are clustered at the city level. *** p<0.01, ** p<0.05, * p<0.1. 

(1)

Firm Leaving 
Sample Dummy

1,173,834

(2) (3) (4)

Fraction Firms 
Leaving 
Sample

Fraction SOEs 
Exiting

Fraction Non-
SOEs Leaving 

Sample

2,936 2,834 2,888

(5)
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Appendix I: Combined and competitiveness effect of KCAPC policy on productivity – 
robustness to firm “exit” 

   
 
 

  

Firm TFP (OP Method)
Policy*treatment -0.034 *** -0.036 *** -0.060 *** -0.058 ***

(0.011) (0.013) (0.017) (0.020)

Firm TFP (LP Method)
Policy*treatment -0.041 *** -0.044 *** -0.068 *** -0.064 ***

(0.012) (0.014) (0.018) (0.020)

Firm Labor Productivity
Policy*treatment -0.039 *** -0.046 *** -0.056 *** -0.060 ***

(0.012) (0.014) (0.019) (0.023)

Number of observations
Number of firms

Firm FE YES YES YES YES

Province-by-year FE YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES

This table reports results from estimating alternative versions of Equation (7) (Columns (1) and (2)) 
and Equation (9) with a 10-kilometer radius (Columns (3) and (4)) in the main text which regress 
firms' productivity levels on the policy dummy interacted with a treatment dummy along with 
alternative sets of fixed effects identified at the bottom of the table using data from 1998 to 2007. 
Columns (1) and (3) include all firms while Columns (2) and (4) exclude firms that disappeared 
from the sample post-policy (2004 to 2007). The entries are the coefficients and standard erorrs (in 
parentheses) of the policy-treatment interaction. Standard errors are clustered at the city-year level. 
*** p<0.01, ** p<0.05, * p<0.1.

35,398 21,542
541,845 361,255 224,192 160,327
87,933 48,916

Exclude Firms 
Leaving

(1) (2)

Combined Effect (DD Estimation)

(3) (4)
Competitiveness Effect (BD-DD 

Estimation)

Baseline
Exclude Firms 

LeavingBaseline
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Appendix J: Combined effect (DD estimation) and competitiveness effect (BD-DD estimation) 
of KCAPC policy - robustness checks 

 

 

DD Robustness Checks

Firm TFP (OP Method)
Policy*treatment -0.034 *** -0.034 -0.030 * -0.037 *** -0.032 ***

(0.011) (0.023) (0.016) (0.012) (0.011)

Firm TFP (LP Method)
Policy*treatment -0.041 *** -0.041 * -0.044 *** -0.044 *** -0.039 ***

(0.012) (0.024) (0.017) (0.013) (0.012)

Firm Labor Productivity
Policy*treatment -0.039 *** -0.039 -0.042 *** -0.045 *** -0.036 ***

(0.012) (0.025) (0.016) (0.012) (0.012)

Number of observations

BD-DD Robustness Checks

Firm TFP (OP Method)
Policy*treatment -0.060 *** -0.060 * -0.062 *** -0.074 *** -0.050 ***

(0.017) (0.033) (0.022) (0.018) (0.015)

Firm TFP (LP Method)
Policy*treatment -0.068 *** -0.068 ** -0.066 *** -0.079 *** -0.056 ***

(0.018) (0.033) (0.023) (0.020) (0.016)

Firm Labor Productivity
Policy*treatment -0.056 *** -0.056 -0.070 *** -0.072 *** -0.050 ***

(0.020) (0.040) (0.024) (0.019) (0.018)

Number of observations

Firm FE YES YES YES YES YES

Province-by-year FE YES YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES YES

Weighted by firm value added YES

Weighted by firm employment YES

Weather controls YES

Standard errors clustered by city-year YES YES YES YES

Standard errors clustered by city YES

(1) (2) (3) (4) (5)

Top panel reports results from estimating alternative versions of Equation (7) in the main text which regresses firms' 
productivity on the policy dummy interacted with a treatment dummy. Bottom panel reports results from estimating 
alternative versions of Equation (8) in the main text which regresses firms' productivity on the policy dummy interacted with 
a treatment dummy and applying a ten-kilometer maximum distance between treatment and control firms. All regressions use 
data from 1998 to 2007 and include alternative sets of fixed effects, control variables, observation weightings, and 
clustering of standard errors identified at the bottom of the table. The entries are the coefficients and standard erorrs (in 
parentheses) of the policy-treatment interaction. Standard errors are clustered at the city-year level. *** p<0.01, ** p<0.05, * 
p<0.1.

541,845 541,885 541,845 541,845 541,845

224,192 224,192 224,192 224,192 224,192
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Appendix K: Comparison of PM2.5 concentrations in treatment and control regions within 
different maximum distances of borders 

 
 

(1) (2) (3) (4) (5) (6)

Year Mean St. Dev Mean St. Dev Diff %

1-kilometer maximum distance
1998 32.03    10.56    31.96    10.57    0.07      0.22%
1999 30.40    10.28    30.35    10.28    0.05      0.16%
2000 34.96    12.37    34.87    12.35    0.09      0.26%
2001 36.78    12.13    36.71    12.11    0.07      0.19%
2002 38.07    13.23    37.98    13.21    0.09      0.24%
2003 40.55    14.79    40.46    14.78    0.09      0.22%
2004 41.63    15.59    41.55    15.56    0.08      0.19%
2005 41.63    16.74    41.55    16.71    0.08      0.19%
2006 45.23    18.51    45.12    18.48    0.11      0.24%
2007 44.86    18.13    44.75    18.10    0.11      0.25%

Obs.

10-kilometer maximum distance
1998 32.03    10.72    31.37    10.65    0.66      2.08%
1999 30.41    10.39    29.83    10.34    0.58      1.93%
2000 34.97    12.52    34.27    12.43    0.70      2.02%
2001 36.78    12.29    36.09    12.16    0.69      1.89%
2002 38.06    13.40    37.29    13.29    0.77      2.04%
2003 41.61    14.96    40.69    14.79    0.92      2.24%
2004 40.54    15.87    39.63    15.59    0.91      2.27%
2005 41.76    17.04    40.80    16.74    0.96      2.33%
2006 45.34    18.81    44.26    18.52    1.08      2.41%
2007 43.86    18.51    44.94    18.16    (1.08)    -2.43%

Obs.

50-kilometer maximum distance
1998 32.79    10.84    29.87    10.37    2.92      9.32%
1999 31.06    10.44    28.38    10.11    2.68      9.02%
2000 35.81    12.65    32.59    11.98    3.22      9.42%
2001 37.56    12.38    34.47    11.79    3.09      8.58%
2002 39.02    13.54    35.46    12.80    3.56      9.56%
2003 42.75    14.98    38.60    14.08    4.15      10.20%
2004 41.52    16.13    37.57    14.90    3.95      9.99%
2005 42.96    17.34    38.56    15.98    4.40      10.79%
2006 46.70    19.13    41.86    17.63    4.84      10.93%
2007 46.30    18.94    41.49    17.38    4.81      10.96%

Obs.

Columns (1) through (4) contain mean and standard deviation of PM2.5 

concentrations in treatment and control regions within different maxixmum 
distances of borders between the two types of regions. Columns (5) and (6) 
display the absolute and percentage differences. Concentrations are based on 
AOD pollution data in 1- by 1-kilomter grids as described in the text and an 
observation is a grid-year.

1,231,805 1,709,162

390,465 407,586

Treatment Control

49,277 49,385

Difference
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Appendix L: Test of pollution manipulation near borders using SO2 emissions data 

  

Policy*treatment -0.1508 ** -0.1835 *** -0.1514 *** -0.1778 ***

(0.0642) (0.0524) (0.0446) (0.0407)

Policy*treatment*border -0.0297 0.0079 -0.0470 -0.0002
(0.0569) (0.0513) (0.0499) (0.0446)

Number of observations

Firm FE YES YES YES YES

Province-by-year FE YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES

Within 20 
Kilometers

46,428

This table reports results from estimating Equation (7) in the main text with log SO2 emissions as the 
dependent variable regressed on the policy dummy interacted with a treatment dummy and this variable 
further interacted with a border indicator along with sets of fixed effects identified at the bottom of the 
table using data from 1998 to 2007. Columns 1 through 4 show the results with the border indicator set to 
one if the firm is within 1, 5, 10, and 20 kilometers of the border respectively and zero otherwise. 
Entries are the coefficient and standard errors (in parentheses) of the policy interactions. Standard errors 
are clustered at the city-year level. *** p<0.01, ** p<0.05, * p<0.1.

Within 1 
Kilometer

Within 5 
Kilometers

Within 10 
Kilometers

(1) (2) (3) (4)
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Appendix M: Agglomeration effects in conceptual framework 

To test for agglomeration effects, we follow Greenstone et al. (2010) and assume that firm 𝑖𝑖’s 
TFP is affected by the number of proximate firms. As that paper notes, agglomeration 
spillovers can be either positive, due to innovations or production efficiencies that span 
firms, or negative, due to increases in factor prices that occur when firms become more 
productive. The total number of proximate firms for firm 𝑖𝑖 (𝑁𝑁𝑖𝑖) is comprised of treatment 
(𝑁𝑁𝑇𝑇𝑇𝑇) and control firms (𝑁𝑁𝐶𝐶𝐶𝐶) so that 𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑇𝑇𝑇𝑇 + 𝑁𝑁𝐶𝐶𝐶𝐶 . We also assume that ambient pollution 
changes in response to the policy may increase in the number of proximate treatment but 
not proximate control firms given the policy regulates the former but not the latter. We 
modify Equation (4) in the main text as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿(𝑟𝑟,Ω(𝑁𝑁𝑇𝑇𝑇𝑇),𝑁𝑁𝑖𝑖)𝛼𝛼𝜆𝜆𝐾𝐾(𝑟𝑟,Ω(𝑁𝑁𝑇𝑇𝑇𝑇),𝑁𝑁𝑖𝑖)1−𝛼𝛼. (A8) 

We assume ambient effects weakly increase in the number of local treatment firms: 
𝜕𝜕Ω(𝑁𝑁𝑇𝑇𝑇𝑇) 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇⁄ ≥ 0 and a local control firm has the same agglomeration effects as a local 
treatment firm (𝑗𝑗 = 𝐿𝐿,𝐾𝐾): 𝜕𝜕𝜆𝜆𝑗𝑗 𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶⁄ = 𝜕𝜕𝜆𝜆𝑗𝑗 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇⁄ = 𝜕𝜕𝜆𝜆𝑗𝑗 𝜕𝜕𝜕𝜕𝑖𝑖⁄ . Agglomeration effects can be 
positive, negative, or nil (𝜕𝜕𝜆𝜆𝑗𝑗 𝜕𝜕𝜕𝜕𝑖𝑖⁄ ≤≥ 0) and can be either convex, concave, or neither in the 
number of firms (𝜕𝜕2𝜆𝜆𝑗𝑗 𝜕𝜕𝑁𝑁𝑖𝑖2⁄ ≤≥ 0, and 𝜕𝜕2𝜆𝜆𝑗𝑗 𝜕𝜕𝑁𝑁𝑖𝑖2⁄ ≤≥ 0). 

To generate triple differences with respect to the number of treatment and control firms, we 
begin with Equation (5) in the main text: 

𝜕𝜕𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)
𝜕𝜕𝜕𝜕

= �𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝜕𝜕

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

� + �𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω

� 𝜕𝜕Ω
𝜕𝜕r

. (A9) 

Taking the derivatives with respect to the number of control and treatment firms, 
respectively, provides the triple differences: 

𝜕𝜕𝜕𝜕𝜕𝜕(𝑇𝑇𝐹𝐹𝐹𝐹𝑖𝑖)
𝜕𝜕𝜕𝜕𝜕𝜕𝑁𝑁𝐶𝐶𝐶𝐶

= 𝛼𝛼
𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝑁𝑁𝑖𝑖

(1)
+ (1 − 𝛼𝛼)

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝑁𝑁𝑖𝑖

(2)
+ 

�𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝑁𝑁𝑖𝑖

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝑁𝑁𝑖𝑖

� 𝜕𝜕Ω
𝜕𝜕r

(3)
, (A10a) 

and 

𝜕𝜕𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)
𝜕𝜕𝜕𝜕𝜕𝜕𝑁𝑁𝑇𝑇𝑇𝑇

= 𝛼𝛼
𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝑁𝑁𝑖𝑖

(1)
+ (1 − 𝛼𝛼)

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝑁𝑁𝑖𝑖

(2)
+ 

�𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝑁𝑁𝑖𝑖

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝑁𝑁𝑖𝑖

� 𝜕𝜕Ω
𝜕𝜕r

(3)
+
𝛼𝛼 �𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω

� 𝜕𝜕Ω
𝜕𝜕𝑁𝑁𝑇𝑇𝑇𝑇

(4)
+

+�𝛼𝛼
𝜕𝜕2𝑙𝑙𝑙𝑙(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω2

+ (1 − 𝛼𝛼) 𝜕𝜕
2𝑙𝑙𝑙𝑙(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω2

� 𝜕𝜕Ω
𝜕𝜕r

𝜕𝜕Ω
𝜕𝜕𝑁𝑁𝑇𝑇𝑇𝑇

(5)
. (A10b) 

Terms (1) and (2) in Equations (A10a) and (A10b) are the amplification of the 
competitiveness effect by any agglomeration effects while term (3) is the amplification of the 
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ambient effect by any agglomeration effects. Term (4) captures how the competitiveness 
effect is amplified by the ambient effect as a function of the number of treatment firms. Term 
(5) is the scaling of the ambient effect due to any nonlinearities with respect to the number of 
treatment firms. 

Given that control and treatment firms paired together in the BD-DD estimation face the 
same proximate firms and the ambient effects (𝜕𝜕Ω 𝜕𝜕r⁄ ) are held constant in the BD-DD 
sample, term (3) in Equations (A10a) and (A10b) is differenced out in estimation: 

𝜕𝜕𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)
𝜕𝜕𝜕𝜕𝜕𝜕𝑁𝑁𝐶𝐶𝐶𝐶

=
𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝑁𝑁𝑖𝑖

(1)
+

(1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝑁𝑁𝑖𝑖

(2)
, (A11a) 

and 

𝜕𝜕𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)
𝜕𝜕𝜕𝜕𝜕𝜕𝑁𝑁𝑇𝑇𝑇𝑇

= 𝛼𝛼
𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝑁𝑁𝑖𝑖

(1)
+ (1 − 𝛼𝛼)

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝑁𝑁𝑖𝑖

(2)
+ 

𝛼𝛼 �𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω

� 𝜕𝜕Ω
𝜕𝜕𝑁𝑁𝑇𝑇𝑇𝑇

(4)
+ +�𝛼𝛼

𝜕𝜕2𝑙𝑙𝑙𝑙(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω2

+ (1 − 𝛼𝛼) 𝜕𝜕
2𝑙𝑙𝑙𝑙(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω2

� 𝜕𝜕Ω
𝜕𝜕r

𝜕𝜕Ω
𝜕𝜕𝑁𝑁𝑇𝑇𝑇𝑇

(5)
. (A11b) 

The triple difference with respect to the number of proximate control firms (Equation (A11a)) 
reflects changes in agglomeration effects in response to the policy. Therefore, the interaction 
of the treatment dummy, the policy dummy, and the proximate number of control firms in a 
BD-DD estimation captures the agglomeration effect. If this is significantly different than 
zero then the baseline estimates of the competitiveness effects also reflect agglomeration 
spillovers. 

In estimating this it is necessary to control for the triple difference with respect to the 
number of proximate treatment firms (Equation (A11b)) because it includes both 
agglomeration and amplification of ambient effects. This can be captured by including the 
interaction of the treatment dummy, the policy dummy, and the proximate number of 
treatment firms. In the absence of an agglomeration effect (terms (1) and (2) are zero), the 
sign of the coefficient on this term could be either positive or negative. Term (4) is weakly 
positive (the negative competitiveness effect estimated in the baseline results is mitigated 
more by the ambient effect in areas with more treatment firms); but term (5) could be either 
positive or negative depending on whether the ambient effects is concave or convex. 
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Appendix N. Robustness to agglomeration effects 

 
 

  

Policy*treatment 0.140 *** 0.117 ** 0.140 ***

(0.049) (0.051) (0.052)

Policy*treatment*ln(# proximate -0.029 *** -0.033 *** -0.024 ***

     treatment firms) (0.008) (0.009) (0.009)

Policy*treatment*ln(# proximate -0.003 0.002 -0.002
     control firms) (0.009) (0.009) (0.009)

Number of observations

Firm FE YES YES YES

Province-by-year FE YES YES YES

4-digit-sector-by-year FE YES YES YES

224,192

This table reports results from estimating Equation (10) in the main text which regresses 
firms' productivity on the policy dummy interacted with a treatment dummy along with 
triple interactions with number of proximate treatment and control firms (within ten 
kilometers of the firm) and sets of fixed effects identified at the bottom of the table using 
data from 1998 to 2007. Regressions use a 10-kilometer maximum distance between 
treatment and control firms in a pair. The entries are the coefficients and standard erorrs (in 
parentheses) of the policy-treatment interactions. Standard errors are clustered at the city-
year level. *** p<0.01, ** p<0.05, * p<0.1. 

(1) (2) (3)
Firm TFP Firm TFP Firm Labor

(OP Method) (LP Method) Productivity
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Appendix O: Coefficients from placebo tests based on random assignment of 113 out of 338 
cities as treatment cities 

 
TFP (OP estimates) 

 
TFP (LP estimates) 

 
Labor productivity 

 
Probability density distributions of coefficients from estimating the model in Column (3) of Table 3, 
but assigning 113 out of 338 cities randomly as the treatment regions in 500 iterations. The vertical 
lines represent the coefficients estimated in Column (3) of Table 3. 
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Appendix P: Firm characteristics in treatment cities for the DD versus BD-DD (using a ten-
kilometer maximum distance) samples 

 

 

 

(1) (2) (4)

DD 
Sample

BD-DD 
Sample

Log TFP (OP estimates) 2.893 2.914 -0.021 *** -0.7%
0.98 0.90 (0.003)

Log TFP (LP estimates) 5.448 5.426 0.022 *** 0.4%
0.93 0.88 (0.003)

Labor productivity 84.350 77.280 7.070 *** 8.7%
     (CNY 1,000/ Worker) 147.70 135.50 (0.413)
Employment (persons) 224.7 214.1 10.60 *** 4.8%

293.7 282.4 (0.8)
Sales (CNY 1,000) 51,105 50,796     309 0.6%

94,336 93,730 (278)
Value added 14,370 13,264     1,106 *** 8.0%
     (CNY 1,000) 25,036 23,612 (71)
Wages (CNY 1,000) 2,897 2,970       -73 *** -2.5%

4,985 4,970 (15)
Capital (CNY 1,000) 16,579 16,023     556 *** 3.4%

32,107 31,836 (94)
Intermediate input 38,967 39,293     -326 -0.8%
      (CNY 1,000) 73,637 74,667 (220)

Number of Firms 58,425 25,834
Number of Observations 367,399 165,672

(3)

Difference

Firm-level data from 1998 to 2007 for treatment firms used in DD estimation of the 
combined effect (Column 1) and treatment firms used in BD-DD estimation of the 
competitiveness effect using a ten-kilometer maximum distance (Column 2). Standard 
deviations in parentheses. Column 3 provides the difference in means and its standard 
error in parentheses and Column 4 the percentage difference. * = 10% significance, ** = 
5% significance, *** = 1% significance for a two-sided t-test.

Treatment Sub-Sample
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